期刊文献+

一种基于遗传算法的极限学习机改进算法研究 被引量:4

The Modified Study on Extreme Learning Machine Based on Genetic Algorithm
下载PDF
导出
摘要 针对传统极限学习机(ELM)缺乏有效的训练方法、应用时预测精度不理想这一弱点,提出了一种基于遗传算法(GA)训练极限学习机(GA-ELM)的方法。在该方法中,ELM的输入权值和隐藏层节点阈值映射为GA的染色体向量,GA的适应度函数对应ELM的训练误差;通过GA的遗传操作训练ELM,选出使ELM网络误差最小的输入权值和阈值,从而改善ELM的泛化性能。通过与ELM、I-ELM、OS-ELM、B-ELM4种方法的仿真结果对比,表明遗传算法有效地改善了ELM网络的预测精度和泛化能力。 In order to improve the prediction accuracy of traditional Extreme Learning Machine (ELM) algorithm. Aim to over- come the lack of effective training methods for traditional extreme learning machine (ELM), the prediction accuracy is not ideal ~ We proposed a method which based on genetic algorithm (GA) training Extreme Learning Machine. In this method, the initial input weights and threshold vector of ELM maps to the chromosome vector of GA, and the fitness function of GA corresponds to the training error of ELM;By means of the GA to train ELM, improve the ELM's generalization capacity. Comparing the simulation results of GA--ELM with ELM, I--ELM, OS--ELM, B--ELM, the simulation results show that the genetic algo- rithm can effectively improve the prediction accuracy and generalization ability of ELM network.
出处 《软件导刊》 2017年第9期79-82,86,共5页 Software Guide
关键词 遗传算法 极限学习机 权值 阈值 genetic algorithm extreme learning machine weight
  • 相关文献

参考文献3

二级参考文献32

  • 1Huang Guangbin, Zhu Qinyu, Siew Cheekheong. Extreme learning machine: theory and applications [ J ]. Neurocomputing, 2006,70( 1/2/3 ) :489 - 501.
  • 2Deng W, Chen L. Color imagewatermarking using regularized extreme learning machine [ J ]. Neural Network World, 2010,20 (3) :317 -330.
  • 3Zong Weiwei, Huang Guangbin. Face recognition based on extreme learning machine [ J ]. Neurocomputing,2011,74 (16) :2541 - 2551.
  • 4Kennedy J, Eberhart R. Particle swarm optimization [ C ]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, 1995 : 1942 - 1948.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [ C ]//Proc of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, 1995:39 -43.
  • 6Chih Chung Chang, Chih Jen Lin. LIBSVM : a library for support vector machines [ EB/OL ]. [ 2012 - 11 - 16 ] http ://www. csie. ntu. edu. tw/ - cjlin/libsvm,.
  • 7HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70 ( 1/3) : 489-501.
  • 8CAO J W, LIN Z P. Huang G-B (2011) Composite function wavelet neural networks with differential evolution and extreme learning machine. Neural Process Lett 33(3):251-265.
  • 9CAO J W, LIN Z P, HUANG G B. Self-Adaptive evolutionary extreme learning machine[J]. Neural Process Lett (2012) 36:285-305.
  • 10YANG X SH, AMIR H. Gand, Bat algorithm: A novel approach for global engineering optimization [J ]. Engineering Computations, 2012, 29 ( 5 ): 464-483.

共引文献108

同被引文献47

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部