期刊文献+

基于扩展目标先验的贝叶斯压缩感知成像 被引量:1

Bayesian Compressed Sensing Imaging for Extended Target Based on Distribution of Prior Information
下载PDF
导出
摘要 已有的基于压缩感知理论的雷达成像技术通常是基于待重构目标散射点自身非常"稀疏"的前提下。然而实际情形中,针对大型刚体目标成像,如飞机、舰船等,其距离维及方位维通常存在一定的扩展特性,此时成像场景目标空间域的稀疏性相对较差,如果仍采用传统方法进行目标反演,所获得的目标重构性能通常并不理想。据此,基于扩展目标的先验信息,提出了一种改进的贝叶斯压缩感知成像方法。仿真试验验证了所提方法的有效性。 Most of existing compressed sensing(CS)based radar imaging methods are based on the assumption that the targets are sparse enough.While in practice the large rigid targets,such as aircrafts and ships,are often extended in range and cross range dimensions.Therefore,the sparsity of the target space in the imaging scene is relatively poor.If traditional methods are utilized to make inversion of the target,the reconstruction performances would be severely degraded.By using the sparsity and continuity property of the target,a novel Bayesian CS-based imaging method is proposed in this paper.Experimental results verify the effectiveness of the proposed method.
出处 《雷达科学与技术》 北大核心 2017年第4期381-387,391,共8页 Radar Science and Technology
基金 国家自然科学基金(No.61172155 61401140) 国家863计划(No.2013AA122903)
关键词 高分辨率成像 贝叶斯压缩感知 扩展目标 先验信息 high-resolution imaging Bayesian compressed sensing extended target prior information
  • 相关文献

参考文献2

二级参考文献31

  • 1王大海,王俊.单发多收模式下无源雷达成像研究[J].电子学报,2006,34(6):1138-1141. 被引量:21
  • 2Liu Chang-chang and Chen Wei-dong. Sparse self-calibration imaging via iterative MAP in FM-based distributed passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(3): 538-542.
  • 3Palmer J E, Harms H A, Searle S J, et at. DVB-T passive radar signal processing[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2116-2126.
  • 4Liu F, Antoniou M, Zeng Z, et al: Coherent change detection using passive GNSS-based BSAR: experimental proof of concepts[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4544-4555.
  • 5Wang Ling, Yarman C E, and Yazici B. Doppler-hitchhiker: a novel passive synthetic aperture radar using ultranarrowband sources of opportunity[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3521-3537.
  • 6Antoniou M, Zeng Z, and Liu Fei-feng. Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 477-481.
  • 7Olivadese D, Giusti E, Petri D, et al: Passive ISAR withDVB-T signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4508-4517.
  • 8Wang Tian-yun, Liu Chang-chang, Lu Hong-chao, et al: Sparse passive radar imaging based on digital video broadcasting satellites using the MUSIC algorithm[C]. Preceedings of the IEEE llth International Conference on Signal Processing, Beijing, 2012: 1925-1930.
  • 9Wang Dang-wei, Ma Xiao-yan, Chen A L, et al: High- resolution imaging using a wideband MIMO radar system with two distributed arrays[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1280-1289.
  • 10Yang Jun-guang, Thompson J, Huang Xiao-tao, et al: Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4214-4225.

共引文献11

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部