期刊文献+

基于正则化方法的化合物密度主因子选择

Selecting the Main Factors Influencing the Densities of Compounds via Regularization Method
下载PDF
导出
摘要 用正则化方法结合最小角回归算法(Lars)对影响多硝基芳香族化合物(PNACs)密度的主因子进行研究,通过以多硝基芳香族化合物中的分子结构描述码为参数,构造L1正则化模型,考虑不同的最大迭代次数,选取影响分子描述码,依据相关的平均影响程度给出相应主要影响分子描述码,预测密度值与参考值相对误差在7.7%以内。 The main factors affecting the densities of polynitroaromatic compounds(PNACs) are studied by using regularization method which is solved by least angle regression algorithm. The molecular structure describers(MSDs) are used as the input variable for constructing L1 regularization model and different maximum iteration times are considered for determining the number of MSDs. The most MSDs affecting the densities of PNACs are chosen and the corresponding MSDs are given according to their relative average degree of influencing. The relative error between the predicted values and literature ones of the densities of PNACs is within 7.7%.
作者 丁毅涛
机构地区 西京学院理学院
出处 《价值工程》 2017年第28期213-215,共3页 Value Engineering
基金 西京学院科研项目(XJ160141)
关键词 正则化 最小角回归 多硝基芳香族化合物 主因子 regularization least angle regression PNACs main factor
  • 相关文献

参考文献3

二级参考文献28

  • 1张向东,赵立群,张国义.人工神经网络法预测有机物基础物性[J].化工学报,1995,46(1):66-74. 被引量:17
  • 2刘建民,唐少春,徐复铭,周伟良.基于ANN的丁羟复合推进剂燃速预测[J].火炸药学报,2006,29(3):13-16. 被引量:6
  • 3蔡弘华,田德余,林振天,刘剑洪,洪伟良.利用ANN法预估芳香族多硝基化合物的密度[J].火炸药学报,2007,30(3):9-15. 被引量:7
  • 4Valiant LG.A theory of the leamabl[M].New York:ACM Press,1984.
  • 5Kearns M,Valiant LG.Learning boolean formulae or factoring,TR-1488[R].Cambridge,MA:Havard University Aliken Computation Laboratory,1988.
  • 6Schapire R.The strength of weak learnability[J].Machine Learning 5,1990:197-227.
  • 7Freund Y,Schapire R.Boosting a weak learning algorithm by majority[J].Information and Computation,1995,121(2):256-285.
  • 8Freund Y,Schapire R.A decision-theoretic generalization of on-line learning and application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119-139.
  • 9Schapire R.The Boosting approach to machine learning:an overview.In MSRI Workshop on Nonlinear Estimation and Classification.Springer,2002.
  • 10Breiman L.Arcing classifiers (with discussion)[J].The Annals of Statistics,1998,26:801-849.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部