期刊文献+

基于ACC系统的目标车辆换道与出入弯道状态辨识算法 被引量:3

An Algorithm for State Identification of Lane Change and Curve Entry/Exit of Target Vehicle Based on ACC System
下载PDF
导出
摘要 自适应巡航控制(ACC)系统利用雷达对前方目标进行追踪,当前车进行换道或进出弯道时,ACC系统无法区分这两种状态,容易引发交通冲突。针对此问题,本文中通过实际驾驶试验,获取了前车不同运动状态的数据,采用道路曲率估算值、前车行驶轨迹的斜率及其变化率和前车与自车之间横向距离作为表征参数,结合车-路协同运动特征,建立了前车换道与进出弯道的识别模型,并利用实测数据对模型的有效性进行了验证。结果表明:当自车处于直道时,对前车换道和进入弯道的识别率分别达到91.46%和89.81%;当自车处于弯道时,对前车换道和驶出弯道的识别率分别达到87.06%和90.42%。 Adaptive cruise control (ACC) system uses radar to track preceding target,but it is unable to distinguish whether the preceding vehicle is doing lane change or entering/exiting curved road,easily leading to traffic conflict.Aiming at this problem,the data of preceding vehicle in different running states are collected by driving test.The estimated values of road curvature,the slope and its changing rate of preceding vehicle trajectory,and the lateral distance between host vehicle and preceding vehicle are taken as characteristic parameters.With consideration of the cooperative characteristics between vehicle and road,an identification model for lane change and curve entry/exit of preceding vehicle is established with its effectiveness verified by road test data.The results show that when the host vehicle is on a straight road,the recognition rate of lane change and curve entry of preceding vehicle reaches 91.46% and 89.81% respectively;and when the host vehicle is on a curved road,the recognition rate of lane change and curve exit of preceding vehicle reaches 87.06% and 90.42% respectively.
出处 《汽车工程》 EI CSCD 北大核心 2017年第8期922-927,共6页 Automotive Engineering
基金 国家自然科学基金项目(61374196) 陕西省自然科学基金项目(2016JQ5096) 中央高校基本科研业务费专项资金项目(310822151028 310822171118 310822161009)资助
关键词 自适应巡航控制系统 换道 进出弯道 雷达 状态辨识 ACC system lane change curve entry/exit radar state identification
  • 相关文献

参考文献2

二级参考文献24

  • 1金立生,王荣本,Bart Van Arem,郭烈.先进驾驶员辅助系统中的车辆探测研究综述[J].汽车工程,2007,29(2):132-136. 被引量:4
  • 2Swaroop D, Rajagopal K R. Intelligent Cruise Control Systems and Traffic Flow Stability [ C ]. California PATH Research Report. UCB-ITS-PRR-98-36. Dec. 1998 : 1-21.
  • 3ibhor L, Bageshwar W L, Rajamani R. Model Predictive Controlof Transitional Maneuversfor Adaptive Cruise Control Vehicles[ J]. IEEE Trans. Veh. Tech. ,2004,53(5) :1573-1585.
  • 4Li S E, Li K, Wang J. Economy-oriented Yehicle Adaptive Cruise Control with Coordinating Multiple Objectives Function [ J ]. Vehi- cle System Dynamics,2013,51 ( 1 ) : 1 - 17.
  • 5Naus G J L, Ploeg J, Molengraft V D, et al. Design and Imple- mentation of Parametefized AdaptiveCruise Control: An Explicit Model Predictive Control[J]. Control Engineering Practice,2010, 18:882-892.
  • 6Ding B. Quadratic Boundedness via Dynamic Output Feedback for- Constrained Nonlinear Systems in Takagi-Sugeno's Form[J]. Auto- matica,2009,45 (9) :2093-2098.
  • 7Fancher P, Bareket Z, Peng H, et al. Research on Desirable A- daptive Cruise Control Behavior in Traffic Streams [ C ]. Ann Ar- bor,MI: University of Michigan Transportation Research Institute (UMTRI) ,2002, UMTRI-2002-16.
  • 8Rajamani R, Shladover S E. An Experimental Comparative Study of Autonomous and Co-operative Vehicle-follower Control Systems [ J ]. Transportation Research,2001,9 C ( 1 ) : 15-31.
  • 9Tanaka K, WangH O. Fuzzy Control Systems Design and Analysis [ M ]. Wiley Inc, New York,2001.
  • 10Alessandri A, BagliettoM, Battistelli G. On Estimation Error Bound- sfor Receding-horlzon Filters Using Quadratic Boundedness [ J ]. IEEE Trans. Auto. Control,2004,49 : 1350-1355.

共引文献20

同被引文献13

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部