期刊文献+

水平气流中微波折射率结构常数建模 被引量:3

Modeling atmospheric refractive index structure constant of microwave in horizontal airflow
下载PDF
导出
摘要 电磁波在大气中传输时会受到大气湍流的影响,湍流的强弱可以用折射率结构常数C2n来表示.在2.4 GHz的微波环境下,重点研究了微波段空气中水汽压对大气折射率结构常数的影响.温湿度结构常数的计算选择湍流动能(turbulence kinetic energy,TKE)闭合方案,由耗散率方法求得,修正了干燥空气的归一化公式,在水平气流环境中构建了微波折射率结构常数的模型.结合隧道环境中实测的气象参数,采用该模型分析实验时的微波折射率结构常数,得到在2.4 GHz的微波环境下,湿度对折射率结构常数的贡献大于温度. Electromagnetic waves propagating in the atmosphere are influenced by atmospheric turbulence. The structure constant of atmospheric refractive index are generally used to describe turbulence intensity. This paper studies effects of the water vapor pressure in air on atmospheric refractive index in the 2.4 GHz microwave band. A turbulence kinetic energy (TKE) closure scheme is chosen and the structure constant of temperate and humidity is calculated with a turbulent dissipation rate. Then the normalization formulas for dry air are revised at the microwave frequency of 2.4 GHz, and a model of the structure constant of atmospheric refractive index is built in the microwave band in a horizontal airflow. In addition, the model is applied to calculate the atmospheric refractive index structure constant of microwave based on the meteorological parameter actually measured in a tunnel environment. The result indicates that humidity has a more obvious effect on refractive index structure constant in the 2.4 GHz microwave band than temperature.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期501-509,共9页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(61271061 61171086) 上海大学创新基金资助项目(SDCX2012064)
关键词 折射率结构常数 微波 水平气流 水汽压 refractive index structure constant microwave horizontal airflow vapor pressure
  • 相关文献

参考文献1

二级参考文献14

  • 1周杜鑫,金中林,王国弼.地铁区间隧道盾构掘进施工时控制地表沉降的研究[J].上海建设科技,1995(2):20-21. 被引量:2
  • 2翁宁泉,肖黎明,龚知本.折射率结构常数廓线模式讨论[J].大气与环境光学学报,2007,2(1):16-22. 被引量:5
  • 3聂群,吴晓庆.近地面层大气折射率结构常数的模式研究[J].强激光与粒子束,2007,19(7):1112-1116. 被引量:6
  • 4BAO H T.Study of piston wind in subway tunnel based on numerical simulation[C]//International Conference on Computer Science and Information Technology.2010:266-268.
  • 5ZHU Y F,WU Y P.The study of temperature field by high-speed train traveling through a long tunnel[C]// International Conference on Energy and Environment Technology.2009:445-448.
  • 6DUTTA T,SINHAMAHAPATRA K P,BANDYOPDHYAY S S.Comparison of different turbulence models in predicting the temperature separation in a Ranque-Hilsch vortex tube[J].International Journal of Refrigeration,2010,33:783-792.
  • 7于勇,张俊明,姜连田.FLUENT入门与进阶教程[M].北京:北京理工大学出版社,2012:1-55.
  • 8JURAEVA M,LEE J H,SONG D J.A computational analysis of the train-wind to identify the best position for the air-curtain installation[J].Journal of Wind Engineering and Industrial Aerodynamics,2011,99(5):554-559.
  • 9JASSAL B S,TEWARI R K.Estimation of refractivity structure parameter (Cn2)[C]// IEEE.1990:1828-1831.
  • 10XIAO H F,ZUO Y,WU J,et al.Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium[J].Optics Letters,2013,38(17):3366-3369.

共引文献1

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部