期刊文献+

一类(α,m)-凸函数的Hadamard型不等式 被引量:4

Hadamard-type inequalities for a class of (α,m)-convex functions
下载PDF
导出
摘要 首先,提出了一个新的积分恒等式;然后,在此基础上构造了一类二阶导函数的绝对值的q次幂是(α,m)-凸函数的新型Hadamard型不等式;最后,给出了一些具体的应用例子. This paper proposes an integral identity. Based on the identity, some results of Hadamaxd inequalities are established for functions with the q-th power of the second derivative's absolute value (α, m)-convex. Some specific applied examples axe presented.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期583-589,共7页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(61374028) 湖北省自然科学基金资助项目(2013CFA131) 三峡大学培优基金资助项目(2015PY075)
关键词 凸函数 m)-凸函数 HADAMARD型不等式 convex function (α, m)-convex function Hadamaxd-type inequality
  • 相关文献

参考文献4

二级参考文献41

  • 1Pe o ari o J E, Proschan F, Tong Y L. Convex functions, partial ordering and statistical applications[M]. NewYork :Aca- demic Press,1991.
  • 2Dragomir S S, Agarwal R P. Two inequalities for differentiable mappings and applications to special means of real numbers and to Trapezoidal formula[J]. Appl,Math Lett,1998,11 (5):91-95.
  • 3Pearce C M E, Pe o ari o J E. Inequalities for differentiable mappings with applications to special means and quadrature formula[J]. Appl Math Lett,2000,13(2):51-55.
  • 4Zabandan, G. A new refinement of the Hermite-Hadamard inequality for convex functions[J]. JIPAM, 2009,10 (2):45.
  • 5Dragomir SS.On Hadamard' s inequality for convex functions on the co-ordinates in a rectangle from the plane[J]. Taiwan- ese J Math,2001, 5(4):775-788.
  • 6NICULESCU C P,PERSSON L E.Convex functions and their applications[M].New York:SpringerVerlag,2006:76-110.
  • 7ANDERSON G D,VAMANAMURTHY M K,VUORINEN M.Generalized convexity and inequalities[J].J Math Anal Appl,2007,335(3):1294-1308.
  • 8HARDY G H,LITTLEWOOD J E,POLYA G.Inequalities[M].2nd ed.Cambridge:Cambridge University Press,1952.
  • 9GAUTSCHI W.Some elementary inequalities relating to the Gamma and incomplete Gamma function[J].J Math Phy,1959,38(1):77-81.
  • 10QI F.A new lower bound in the second Kershaw's double inequality[J].Journal of Computational and Applied Mathematics,2008,214(2):610-616.

共引文献7

同被引文献12

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部