期刊文献+

能源互联网背景下电网负荷预测设计 被引量:2

Power Grid Load Forecasting Design Based on Energy Internet
下载PDF
导出
摘要 能源互联网的提出与发展,决定了电力系统的核心地位。作为电力系统及其自动化的重要研究方向之一,电力系统负荷预测必须符合当前能源互联网的战略布局调整。选取四川省西昌市作为电网负荷预测研究对象,采用灰色数学理论,建立了该地区电网负荷预测数学模型,并应用实例详细介绍了数学模型精度分析、预测值与实际值之间的误差分析以及未来几年内该地区的负荷预测结果。仿真分析结果表明本算法具有较好地预测精度,对该地区电网负荷规划具有一定的辅助指导作用。 The development of the energy Internet determines the core position of the power system. As one of the important research directions of power system and automation, power system load forecast must be in line with the current strategic layout of the energy Internet. This paper selects Xichang city in Sichuan Province as the research object of power network load forecasting, and uses the grey mathematical theory to establishes the mathematical model of load forecasting in the area. Then it introduces the precision analysis of the mathemati- cal model, as well as the error analysis between the prediction value and actual value, and the load prediction results of the region in the next few years. Simulation results show that this proposed algorithm has good prediction accuracy, and provides a certain auxiliary.
作者 柯源
出处 《电力与能源》 2017年第4期444-447,共4页 Power & Energy
关键词 能源互联网 电网负荷 预测 精度 energy Internet grid load forecast guidance to the regional power grid load planning accuracy
  • 相关文献

参考文献2

二级参考文献25

  • 1江琳,顾海涛,蔡榕,高山.基于负荷分解的日最大负荷预测方法研究[J].电力需求侧管理,2005,7(5):21-23. 被引量:5
  • 2栗然,刘宇,黎静华,顾雪平,牛东晓,刘永奇.基于改进决策树算法的日特征负荷预测研究[J].中国电机工程学报,2005,25(23):36-41. 被引量:30
  • 3N.H.Packard et al. Geometry from a time series[J]. Phy. Rev. Lett,1980 (459):712-716.
  • 4P.Grassberger and I.Procaccia. Measuring the strangeness of strange attractors[J]. Physica D,1983(9):189-208.
  • 5Michael T.Rosenstein, James J.Collins and Carlo J.De Luca. A Practical method for calculating largest Lyapunov Exponent from Small data sets[J]. Physica D, 1993. 65:117-134.
  • 6P.Grassberger,I.Procaccia. Estimical of the Kolmogorov entropy from a chaotic signals[J]. Physical Review A, 1983. 28(4):2591-2593.
  • 7Karaki S H.Weather sensitive short-term load forecasting using artificial neural networks and time series[J].International Journal of Power and Energy Systems,1999,19(3):251-256.
  • 8http://neuron.tuke.Sk/competition/index.phphttp://neuron.tuke.Sk/competition/index.php[DB/OL].
  • 9YangHongtzer,HuangChaoming,HuangChinglien.Identification of ARMAX model for short term load forecasting:an evolutionary programming approach[J].IEEE Transactons on Power Systems,1996,11(1):403-408.
  • 10Srinivasan D,Chang C S,Liew A C.Demand forecasting using fuzzy neural computation,with special emphasis on weekend and public holiday forecasting[J].IEEE Transactions on Power Systems,1995,10(4):1897-1903.

共引文献103

同被引文献25

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部