期刊文献+

基于深度信息的人体检测窗口快速提取方法 被引量:1

Studies of Fast Extraction Algorithm for People Detection Window Based on Depth Information
下载PDF
导出
摘要 为改善图像尺度空间搜索方法在人体检测窗口提取中的检测窗口数量多、检测消耗时间长的问题,在深入分析Kinect深度数据特点的基础上,给出了一种基于深度信息快速提取人体检测窗口的方法.该方法通过计算待检测深度图像中深度值出现频次的极大值,根据出现频次极大值对应深度值区域的几何中心确定检测窗口候选位置的中心,并进一步基于深度值和人体高度间的关系,确定检测窗口的尺寸,从而实现快速提取一系列人体检测窗口.最后,从检测窗口数量、响应时间和准确度等3个方面对该提取方法进行了评估,结果表明:该方法的总体效果良好,缩短了检测时间,并且准确率较高,达到了提高人体检测效率的目的. To improve the generalization performance of detection window extraction on people detection,a fast extraction algorithm based on depth information was proposed. The geometric centers of detection windows were obtained by calculating extreme values of frequency of depth data. And the sizes of detection windows were obtained based on the relationship between depth and height in depth image.Finally,a series of people detection windows were extracted fast. And the algorithm was evaluated from the number of detection windows,response time and the accuracy. Experimental results show the feasibility and efficiency of this method.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2017年第9期1335-1343,共9页 Journal of Beijing University of Technology
基金 北京市属高等学校高层次人才引进与培养计划资助项目(CIT&TCD201504025) 北京市自然科学基金资助项目(4173072) 北京工业大学基础研究基金资助项目(040000546317523)
关键词 人体检测 深度图 图像尺度空间搜索 people detection depth image image scale space search
  • 相关文献

参考文献5

二级参考文献117

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection: the protector system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 13-18
  • 3Tons M, Doerfler R, Meinecke M M, Obojski M A. Radar sensors arid sensor platform used for pedestrian protection in the EC-funded project SAVE-U. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 813-818
  • 4Broggi A, Bertozzi M, Fascioli A, Sechi M. Shape-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium. Dearborn, USA. IEEE, 2000. 215-220
  • 5Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 1-6
  • 6Xu Feng-Liang, Liu Xia, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71
  • 7Zhao Liang, Thorpe C. Stereo and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3): 148-154
  • 8Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T.Pedestrian detection using wavelet templates. In: Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico. IEEE, 1997. 193-199
  • 9Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4):349-361
  • 10Cheng Hong, Zheng Nan-Ning, Qin Jun-Jie. Pedestrian detection using sparse Gabor filter and support vector machine. In: Proceedings of IEEE Intelligent Vehicles Sympo-sium. Vienna, Austria. IEEE, 2005. 583-587

共引文献121

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部