摘要
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.
基金
supported by the National Natural Science Foundation of China(Nos.11534006,11674184,and11374166)
the Natural Science Foundation of Tianjin(Nos.16JCZDJC31300 and 13JCZDJC33800)
the 111 Project(No.B07013)
the Collaborative Innovation Center of Extreme Optics