期刊文献+

基于Fox-Li迭代法的偏振敏感谐振腔 被引量:1

Polarization-Sensitive Resonator Based on Fox-Li Iterative Method
原文传递
导出
摘要 矢量偏振光束的发展对偏振敏感谐振腔的模式计算提出了新的要求,基于Fox-Li迭代法和琼斯矢量理论,提出了用于偏振敏感谐振腔的矢量Fox-Li迭代法。该方法可以计算偏振敏感谐振腔内的矢量偏振模式,包括角向偏振TE01*模和径向偏振TM01*模。通过Matlab编程对球面偏振敏感谐振腔内的矢量偏振模式进行数值计算,计算结果与理论一致,证明了该方法的正确性。然后基于轴快流(FAF)CO2激光器平台,采用组合轴锥镜作为谐振腔的尾镜,得到了2.17kW的角向偏振模式输出,与矢量Fox-Li迭代法仿真结果吻合,实验证明了该方法的有效性和准确性。矢量Fox-Li迭代法对于偏振敏感谐振腔的分析和设计具有重要的指导意义。 The development of the vector polarized beam presents a new requirement for the mode calculation of the polarization-sensitive resonator.Derived from Fox-Li iterative method and Jones vector theory,a vector Fox-Li iterative method for polarization-sensitive resonator is presented,which can calculates the vector polarization mode in the polarization-sensitive resonator,including the azimuthally polarized TE01* mode and the radially polarized TM01* mode.The vector polarization modes of a spherical polarization-sensitive resonator are obtained by Matlab numerical calculation with this method.The result is coincident with the theory.Then,the 2.17 kW azimuthally polarized beam is obtained based on a fast axial flow(FAF)CO2laser platform using the combined axicon as the rear mirror of the resonator.And it is consistent with the simulated results with vector Fox-Li iterative method,which experimentally corroborates the validity and accuracy of the vector Fox-Li iterative method.The vector Fox-Li iterative method is of great significance for the analysis and design of polarization-sensitive resonator.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第8期288-293,共6页 Acta Optica Sinica
基金 国家自然科学基金(61308045)
关键词 物理光学 激光谐振腔 矢量偏振光 Fox-Li迭代法 角向偏振光 径向偏振光 physical optics laser resonator vector polarization beam Fox-Li iterative method azimuthal polarization beam radial polarization beam
  • 相关文献

参考文献1

二级参考文献28

  • 1A.Ashkin.Acceleration and trapping of particles by radiation pressure[J].Phys.Rev.Lett.,1970,24(4): 156-159.
  • 2Qiwen Zhan.Trapping metallic Rayleigh particles with radial polarization [J].Opt.Express,2004,12(15): 3377-3382.
  • 3V.Niziev,A.Nesterov.Influence of beam polarization on laser cutting efficiency [J].J.Phys.D,1999,32(13): 1455-1461.
  • 4M.Meier,V.Romano,T.Feurer.Material processing with pulsed radially and azimuthally polarized laser radiation [J].Appl.Phys.A,2007,86(3): 329-334.
  • 5H.Kano,S.Mizuguchi,S.Kawata.Excitation of surface-plasmon polaritons by a focused laser beam [J].J.Opt.Soc.Am.B,1998,15(4): 1381-1386.
  • 6Kouyou Watanabe.Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination [J].Appl.Opt.,2007,46(22): 4985-4990.
  • 7Wan-Chin Kim,No-Cheol Park.Investigation of near-field imaging characteristics of radial polarization for application to optical data storage [J].Opt.Rev.,2007,14(4): 236-242.
  • 8Gilad M.Lerman,Uriel Levy.Radial polarization interferometer [J].Opt.Express,2009,17(25): 23234-23246.
  • 9K.J.Moh,X.-C.Yuan,J.Bu et al..Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams [J].Appl.Opt.,2007,46(30): 7544-7557.
  • 10Mushiake,Y.Matsumura,K.Nakajima et al..Generation of radially polarized optical beam mode by laser oscillation[J].Proc.IEEE,1972,60(9): 1107-1109.

共引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部