期刊文献+

石墨烯包覆富锂层状正极材料的电化学性能 被引量:1

Electrochemical Performance of Graphene Coated Li-rich Layered Anode Material
下载PDF
导出
摘要 采用固相配位法制得石墨烯包覆的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂层状正极材料。用X射线衍射、场发射扫描电镜、循环伏安、恒流充放电和电化学阻抗谱等分析技术对其相组成、微结构和电化学性能进行表征。结果表明:石墨烯包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2材料的电化学性能显著提高,该材料在电流密度为20 mA/g(0.1C)和1 000 mA/g(5C)时的放电比容量分别为240,132 mAh/g;在电流密度为200 mA/g(1C)时,充放电循环100次后,其比容量保持率为84%。 Grapnene-coated Li-rich layered anode material Li1.2Mn0.54Ni0.13Co0.13O2 was prepared based on a solidstate coordination method. Analytical techniques of X-ray diffraction, field-emission scanning electron microscopy,cyclic voltammetry, galvanostatic charge-discharge measurements and electrochemical impedance spectrometry(EIS) were employed to characterize its phase compositions, microstructure and electrochemical performance.The results show that its electrochemical performance is remarkably improved, compared with that of the pristine Li1.2Mn0.54Ni0.13Co0.13O2. Its discharge capacity is determined to be 240, 132 mAh/g at current density of 200 mA/g(0.1C), 1 000 mA/g(5C), respectively. It exhibits a capacity retention of 84% after being cycled for 100 cycles at current density of 200 mA/g(1C).
出处 《安徽工业大学学报(自然科学版)》 CAS 2017年第2期134-138,共5页 Journal of Anhui University of Technology(Natural Science)
基金 安徽省教育厅自然科学研究重点项目(KJ2012A045)
关键词 锂离子电池 富锂层状正极材料 石墨烯 表面包覆 电化学性能 Li-ion battery Li-rich layered anode material graphene surface coating electrochemical performance
  • 相关文献

参考文献2

二级参考文献27

  • 1Johnson CS, Li NC, Lefief C, Vaughey JT, Thackery MM. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1-x)LiMn0.333Ni0.333Co0.333O2 (0 £ x £ 0.7). Chem Mater, 2008, 20: 6095-6106.
  • 2Wu Y, Murugan AV, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. Electrochem Soc, 2008, 155: A635-A641.
  • 3Kang SH, Johnson CS, Vaughey JT. The effects of acid treatment on the electrochemical properties of 0.5 Li2MnO3·0.5 LiNi0.44Co0.25 Mn0.31O2 electrodes in lithium cells. J Electrochem Soc, 2006, 153: A1186-A1192.
  • 4Denis YWY, Katsunori Y, Hiroshi N. Surface modification of Li-excess Mn-based cathode materials. J Electrochem Soc, 2010, 157: A1177-A1182.
  • 5Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem, 2007, 17: 3112-3125.
  • 6Gao Y, Yakovleva MV, Ebner WB. Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochem Solid State Lett, 1998, 1: 117-119.
  • 7Park YJ, Hong YS, Wu X, Ryu KS, Chang SH. Structural investigation and electrochemical behaviour of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 compounds by a simple combustion method. J Power Sources, 2004, 129: 288-295.
  • 8Takahashi Y, Kijima N, Dokko K, Nishizawa M, Uchida I, Akimoto J. Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals. J Solid State Chem, 2007, 180: 313-321.
  • 9Lu CH, Wang HC. Microemulsion-mediated synthesis and electrochemical characterization of nanosized LiNi0.25Co0.5Mn0.25O2 Powders. J Electrochem Soc, 2005, 152: C341-C347.
  • 10Yu C, Guan X, Li G, Zheng J, Li L. A novel approach to composite electrode 0.3Li2MnO3·0.7LiMn1/3Ni1/3Co1/3O2 in lithium-ion batteries with an anomalous capacity and cycling stability at 45.4℃. Scripta Mater, 2012, 66: 300-303.

共引文献4

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部