期刊文献+

乳酸菌的胁迫应答及其对碳水化合物代谢的影响 被引量:12

Stress Responses and Impact of Carbonhydrate Metabolism in Lactic Acid Bacteria
原文传递
导出
摘要 乳酸菌在生产及发挥益生功能时要受到多种不利环境条件的影响,如通过胃肠道时经历的低pH和胆盐等,在工业生产过程中所经历的环境胁迫(包括低温与高温、营养限制、氧化以及其它因素等)。乳酸菌会通过改变某些蛋白的表达,调整代谢通路,提高能量来适应胁迫。本文综述乳酸菌在酸、热、氧、冷及饥饿等胁迫条件下,参与碳水化合物代谢相关蛋白表达的变化及有关基因的变化,从代谢角度了解乳酸菌在耐受和适应环境胁迫时的机制,分析胁迫应答影响乳酸菌代谢通路改变所带来的应用,为研究乳酸菌胁迫应答机制及其工业化应用提供新思路。 Lactic acid bacteria(LAB) could encountered many harsh evironmental conditions for their production and function as probiotics, such as low pH and bile stress passage through the gastrointestinal tract as well as the evironmental stess inculding low or high tempreture, starvation, oxidiative and others in the industry processes. It likely adapts to stress condition via changes in the expression levels of various stress-response proteins, reroutes the metabolic, shifts towards production of more energy-rich intermediates. This review mainly about changes of proteins and genes involved in carbonhydrate metabolism during acid, heat, oxidative, cold stress and starvation conditions, understanding the mechanisms of LAB from metabolism during tolerence and adapted the evironmental stess, analysing the potential exploitation when metabolic pathways altered in LAB stress-response. It could make new ideas for studing the mechanisms of LAB in stress-response and industrial application.
作者 张筠 孟祥晨
出处 《中国食品学报》 EI CAS CSCD 北大核心 2017年第6期145-151,共7页 Journal of Chinese Institute Of Food Science and Technology
基金 黑龙江省青年学术骨干计划(1251G050)
关键词 乳酸菌 胁迫应答 碳水化合物代谢 Lactic acid bacteria stress responses carbonhydrate metabolism
  • 相关文献

参考文献2

二级参考文献40

  • 1Bolotin A, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactic ssp. lactis IL1403. Genome Res,2001, 11: 1-23.
  • 2Bruno-Barcena JM, et al Expression of a heterologous manganese superoxide disrnutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol, 2004, 70(8): 4702-4710.
  • 3Charnporniero-Verges MC, et al. Lactic acid bacteria and proteomics: current knowledge and perspectives. J Chromatography B, 2002, 771(1-2): 329-342.
  • 4De Angelis M, Gobbetti M. Environmental stress responses in Lactobacillus: A review. Proteomics, 2004, 4: 106- 122.
  • 5Desmond C, et al. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl Environ Microbiol, 2004, 70: 5929-5936.
  • 6El Demerdash H A M, et al. Application of the shsp gene, encoding a small heat shock protein, as a food-grade selection marker for lactic acid bacteria. Appl Environ Microbiol, 2003, 69:4408 - 4412.
  • 7Knauf HJ, Vogel RF, Hammes WP. Cloning sequence, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol, 1992, 58:832- 839.
  • 8Li Y, et al. Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol, 2005, 67: 83-90.
  • 9Lorca GL, Valdez GF. A low-pH inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL639. Curr Microbiol, 2001, 42: 21 - 25.
  • 10Pereira DIA, et al. An in vitro study of the probiotic potential of a bile-salt hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterol-lowering properties. Appl Environ Microbiol, 2003, 69(8): 4743-4752.

共引文献7

同被引文献132

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部