期刊文献+

PREFACE

PREFACE
原文传递
导出
摘要 Hydrogels are classical soft and wet materials that have been extensively studied over the past several decades. Recently, with the development of supramolecular science, nanotechnology and precisely synthetic chemistry, various novel hydrogels have been designed and fabricated, which show emerging applications in tissue engineering, drug delivery, anti-fouling coatings, flexible electronics and soft robotics. Through tailoring their two-dimensional surface structures and three- dimensional networks, unique properties such as ultra-high mechanical strength, responsiveness to various kinds of stimuli, biocompatibility, special wettability and adhesion can be achieved. Hydrogels are classical soft and wet materials that have been extensively studied over the past several decades. Recently, with the development of supramolecular science, nanotechnology and precisely synthetic chemistry, various novel hydrogels have been designed and fabricated, which show emerging applications in tissue engineering, drug delivery, anti-fouling coatings, flexible electronics and soft robotics. Through tailoring their two-dimensional surface structures and three- dimensional networks, unique properties such as ultra-high mechanical strength, responsiveness to various kinds of stimuli, biocompatibility, special wettability and adhesion can be achieved.
作者 Zhibo Li
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第10期J0007-J0007,共1页 高分子科学(英文版)
关键词 bonding hydrogel functionalize interfacial responsive PNIPAM covalent hydrophilic dressing permission bonding hydrogel functionalize interfacial responsive PNIPAM covalent hydrophilic dressing permission

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部