期刊文献+

Spectra of charmed and bottom baryons with hyperfine interaction

Spectra of charmed and bottom baryons with hyperfine interaction
原文传递
导出
摘要 Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of Ωb, the only L=0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L= 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the "Review of Particle Physics", we find that in the GBE model, there exist some multiplets (∑c(b), ≡c(b) and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature. Up to now, the excited charmed and bottom baryon states have still not been well studied experimentally or theoretically. In this paper, we predict the mass of Ωb, the only L=0 baryon state which has not been observed, to be 6069.2 MeV. The spectra of charmed and bottom baryons with the orbital angular momentum L= 1 are studied in two popular constituent quark models, the Goldstone boson exchange (GBE) model and the one gluon exchange (OGE) hyperfine interaction model. Inserting the latest experimental data from the "Review of Particle Physics", we find that in the GBE model, there exist some multiplets (∑c(b), ≡c(b) and Ωc(b)) in which the total spin of the three quarks in their lowest energy states is 3/2, but in the OGE model there is no such phenomenon. This is the most important difference between the GBE and OGE models. These results can be tested in the near future. We suggest more efforts to study the excited charmed and bottom baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for determining which hyperfine interaction model best describes nature.
出处 《Chinese Physics C》 SCIE CAS CSCD 2017年第9期27-37,共11页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China(11175020,11575023,U1204115)
关键词 charmed baryons bottom baryons mass spectra fine and hyperfine structure charmed baryons, bottom baryons, mass spectra, fine and hyperfine structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部