期刊文献+

InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration

InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration
原文传递
导出
摘要 We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting A1 reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel characteristics with a current suppression by 〉4 orders of magnitude for a junction bias well below the A1 gap of △0≈ 200 μeV. The experimental data agree well with the Bardeen- Cooper-Schrieffer theoretical expectations for a superconducting tunnel junction. The studied devices employ small-scale tunnel contacts functioning as thermometers as well as larger electrodes that provide proof-of-principle active cooling of the electron distribution in the NWs. A peak refrigeration of approximately δT = 10 mK is achieved at a bath temperature of Tbath≈ 250-350 mK for our prototype devices. This method introduces important perspectives for the investigation of the thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration. We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting A1 reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel characteristics with a current suppression by 〉4 orders of magnitude for a junction bias well below the A1 gap of △0≈ 200 μeV. The experimental data agree well with the Bardeen- Cooper-Schrieffer theoretical expectations for a superconducting tunnel junction. The studied devices employ small-scale tunnel contacts functioning as thermometers as well as larger electrodes that provide proof-of-principle active cooling of the electron distribution in the NWs. A peak refrigeration of approximately δT = 10 mK is achieved at a bath temperature of Tbath≈ 250-350 mK for our prototype devices. This method introduces important perspectives for the investigation of the thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration.
机构地区 NEST Nanoscience Center
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3468-3475,共8页 纳米研究(英文版)
关键词 InAs nanowire superconducting tunnel junction thermometry nanorefrigeration InAs nanowire, superconducting tunnel junction, thermometry, nanorefrigeration
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部