期刊文献+

新型全氟和多氟烷基化合物的分析、行为与效应研究进展 被引量:11

Progress on analytical methods and environmental behavior of emerging per-and polyfluoroalkyl substances
原文传递
导出
摘要 全氟化合物的污染已成为全球性的环境问题.随着全氟辛基磺酸的限制使用,全氟和多氟烷基化合物替代物的种类和数量不断增加.在大量生产和使用过程中,这些氟化物不可避免地通过直接的使用和排放或间接的转化过程进入到环境和生物体中,因而新型全氟和多氟烷基化合物的环境发现、赋存与迁移行为及潜在的生物学效应研究已成为全氟污染物研究的热点.本文对目前从环境介质中发现的新型全氟和多氟烷基化合物的种类、行为及未知全氟和多氟烷基化合物组分的鉴别方法进行了总结,并对可能的分析技术方法进行了展望. Per- and polyfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals widely used in manufacture and daily necessities, which are contaminants ubiquitous existed in various environmental matrices and biota. Due to the persistent, bioaccumulative, long-range transport and potential toxic behaviors, production of perfluorooctane sulfonic acid was voluntarily phased out. Perfluorooctanoic acid, its salt and related compounds were also proposed to be included the Stockholm Convention. Restrictions on production and usage of PFAS chemicals have resulted in emergence of novel PFAS compounds through direct manufacturing emissions and indirect transformation pathways, and increasing attention has been focused on these alternatives. In this review, we summarized recent investigations on major groups of emerging PFASs with various molecular structures, and current analytical strategies on the identification of unknown organic fluoride components were overviewed. Four classes of emerging PFASs are covered, including short-chain perfluoroalkyl substances, cyclic perfluoroalkyl acids, perfluoropolyethers and chlorine or hydrogen-substituted polyfluoroalkyl substances. Current knowledge on molecular structures, production and application, environmental behaviors and potential biological effects are summarized, if available. Known PFASs were noticed as a small part of organic fluorinated compounds in the environment. Consequently, new analytical strategies, such as the mass balance analysis and the oxidative conversion methods, were developed for the analysis of unknown fluorinated components. Mass balance analysis of extractable organic fluorine were used to predict the content of unknown organic fluorine in various environmental matrices including sea water, soil, and human blood. Extractable organic fluorine could be exactly quantified after conversion into inorganic fluoride by high-temperature combustion, and known fluorinated components could also be measured by liquid chromatography tandem mass spectrometry. The difference in contents between extractable organic fluorine and known fluorinated components was thus considered as components of unknown organic fluorine. The oxidative conversion method was especially superior for the analysis of fluorinated precursors such as fluorotelomer sulfonates, perfluoroalkane sulfonamides and fluorotelomer phosphate diesters, in which these poly- fluoroalkyl substances could be transformed into known perfluoroalkyl carboxylates (PFCAs) by reaction with hydroxyl radicals at basic conditions. The content of polyfluoroalkyl precursors could be determined by comparing the change of PFCAs contents before and after the oxidation assay. Compared with the mass balance analysis method, this oxidative conversion method require quantification of more PFAS terminal products, and it was not applicable for stable perfluorinated compounds. Meanwhile, occurrence of a variety of novel PFAS analogues have brought challenges on PFAS analysis. For instance, varied molecular structures of emerging PFASs result in distinct physical-chemical properties, which further complicate the analytical process including sample pretreatment and chromatographic isolation. Development of additional methods, such as hydrophilic interaction chromatography (HILIC) for the analysis of short chain PFASs and orthogonal liquid chromatography for the analysis of zwitterionic, cationic, and anionic fluorinated chemicals, are urgently needed. Statistical tools including mass spectrum deconvolution, peak picking, alignment and feature filtering would be promising for confirmation of novel PFAS molecular structures. Also, environmental transformation of PFAS precursors are still ambiguous. Application of strategies in metabolomics analysis might facilitate studies on degradation mechanism of PFAS chemicals.
出处 《科学通报》 EI CAS CSCD 北大核心 2017年第24期2724-2733,共10页 Chinese Science Bulletin
基金 国家自然科学基金(21622705 21577151 21361140359) 中国科学院青年创新促进会项目资助
关键词 短链全氟化合物 环状全氟烷酸 全氟聚醚 氯代和氢代多氟化合物 环境发现 short-chain perfluoroalkyl substances, cyclic perfluoroalkyl acids, perfluoropolyethers, chlorine- and hydrogen-substituted polyfluoroalkyl substances, environmental occurrence
  • 相关文献

参考文献2

二级参考文献59

  • 1刘冰,金一和,于棋麟,王柯,董光辉,李洪源,齐藤宪光,佐佐木和明.松花江水系江水中全氟辛烷磺酸和全氟辛酸污染现状调查[J].环境科学学报,2007,27(3):480-486. 被引量:53
  • 2Giesy J P, Kannan K. Global distribution of perfluorooctanesulfonate in wildlife[ J]. Environmental Science and Technology,2001, 35(7) : 1339-1342.
  • 3Wang T, Wang Y W, Liao C Y,e( al. Perspectives on theinclusion of perfluorooctane sulfonate into the StockholmConvention on Persistent Organic Pollutants [ J]. EnvironmentalScience and Technology, 2009,43(14) : 5171-5175.
  • 4Bao J, Liu W, Liu L, et al. Perfluorinated compounds in urbanriver sediments from Guangzhou and Shanghai of China [ J].Chemosphere, 2010,80(2) : 123-130.
  • 5Li F, Zhang C J,Qu Y,et al. Quantitative characterization ofshort-and long-chain perfluorinated acids in solid matrices inShanghai, China[ J]. Science of the Total Environment, 2010,408(3) : 617-623.
  • 6Wang T Y,Chen C L, Naile J E,et al. Perfluorinatedcompounds in water, sediment and soil from Cuanting Reservoir,China [ J]. Bulletin of Environmental Contamination andToxicology, 2011, 87(1) : 74-79.
  • 7Miyake Y, Yamashita N, So M K, et al. Trace analysis of totalfluorine in human blood using combustion ion chromatography forfluorine : a mass balance approach for the determination of knownand unknown organofluorine compounds [ J]. Journal ofChromatography A,2007,1154( 1-2) ; 214-21.
  • 8Bao J, Jin Y H, Liu W, et al. Perfluorinated compounds insediments from the Daliao River system of northeast China [ J].Chemosphere, 2009 , 77(5) : 652-657.
  • 9Li C L, Ji R, Schaeffer A, et al. Sorption of a branchednonylphenol and perfluorooctanoic acid on Yangtze Riversediments and their model components [ J]. Journal ofEnvironmental Monitoring, 2012,14(10) : 2653-2658.
  • 10Wang T Y, Lu Y L, Chen CL, et al. Perfluorinated compoundsin estuarine and coastal areas of north Bohai Sea, China [ J].Marine Pollution Bulletin,2011 , 62(8) : 1905-1914.

共引文献34

同被引文献77

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部