摘要
本文给出了一个反例说明超连续domain L在Scott连续闭包算子c下的像c(L)不一定是超连续domain,证明了若超连续domain L上的Scott连续投射p有上伴随或有下伴随,则p(L)是超连续domain;若超代数domain L上的Scott连续闭包算子c有上伴随或有下伴随,则c(L)是超代数domain.
In this paper, we give a counterexample to show that for an upper-continuous closure operator c on the hyperalgebraic domain L, c(L) is not a hypercontinuous domain. It is proved that if p is a Scott-continuous projection on a hypercontinuous domain L and p is a lower (upper) adjoint, then p(L) is a hypercontinuous domain. We also show that if c is a Scott-continuous closure operator on the hyperalgebraic domain L and c is a lower (upper) adjoint, then c(L) is a hyperalgebraic domain.
出处
《模糊系统与数学》
北大核心
2017年第4期144-147,共4页
Fuzzy Systems and Mathematics
基金
国家自然科学基金(11161023
11661057)
"赣鄱英才555工程"领军人才培养计划项目
江西省自然科学基金(20114BAB201008
20161BAB2061004)资助项目
关键词
投射
超连续domain
下伴随
上伴随
Projection
Hypercontinuous Domain
Lower Adjoint
UpperAdjoint