期刊文献+

基于自适应Morlet小波变换滚动轴承声学故障诊断的研究 被引量:6

Sound Signal Testing of Rolling Bearing Based on Adaptive Morlet Wavelet
下载PDF
导出
摘要 基于声音信号的测试与分析是滚动轴承故障检测与诊断的一种新方法,提出了基于自适应Morlet小波变换诊断轴承声学信号故障的新方法。首先利用最小Shannon熵对Morlet小波的形状参数进行优化,找到与所测声音信号特征成份最匹配的小波,再对小波系数矩阵进行奇异值分解,通过奇异值与变化尺度的关系曲线得到最佳小波变换尺度,最后对滚动轴承故障信号进行Morlet小波变换进行故障特征提取。结果表明:该方法能有效地从强噪声背景下提取出轴承声学信号的故障。 Diagnosis of rolling bearing faults based on sound signal testing and analysis is a new method,a feature extraction method of sound signal of rolling bearing is raise based on adaptive Morlet wavelet.Firstly,minimum Shannon entropy is used to optimize the Morlet wavelet shape factor in order to match with the impact component.Then,an abrupt information detection method based on the transitional stage of singular curve of wavelet coefficient matrix is used to choose the appropriate scale for the wavelet transformation.Finally,the fault feature of the signal can be extracted using this method.The experimental results shows that the method can extract sound signal fault feature more effectively.
出处 《石家庄铁道大学学报(自然科学版)》 2017年第3期29-32,47,共5页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
基金 国家自然科学基金(11227201 11472179 U1534204 11572206 11302137) 河北省自然科学基金(A2015210005) 河北省教育厅项目(YQ2014028)
关键词 声学信号 小波变换 Shannon熵 故障诊断 sound signal wavelet transform shannon entropy fault diagnosis
  • 相关文献

参考文献5

二级参考文献47

  • 1梁霖,徐光华,侯成刚.基于奇异值分解的连续小波消噪方法[J].西安交通大学学报,2004,38(9):904-908. 被引量:26
  • 2胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 3谢培甫.基于小波分析和BP神经网络的滚动轴承的故障诊断[J].农业装备与车辆工程,2006,44(2):45-47. 被引量:2
  • 4Yu Guo, Kok Kiong Tan. Order- crossing removal in Gabor order tracking by independent component analysis[J]. Journal of Sound and Vibration, 2009, 325 (1):471-488.
  • 5NIKOLAOU N G, ANTONIADIS I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets [J]. Mechanical Systems and Signal Processing, 2002, 16(4): 677- 694.
  • 6Yuh-Tay Sheen. On the study of applying Morlet wavelet to the Hilbert transform for the envelope detection of bearing vibrations[J ]. Mechanical Systems and Signal Processing, 2009, 23 (5):1 518-1 527.
  • 7Nader S. Diagnostics, Prognostics and Fault Simulation ForRolling Elo-nent Bearings[ D]. Australia: UNSW, 2007: 77 - 80.
  • 8Zhang Yongxiang, Randall R B. Rolling element bearing fault diagnosis based on the combination of genetic algorithms and fast kurtogram[J].Mechanical Systems and Signal Processing, 2007,21(1) :108 - 124.
  • 9Hyvaerinen A. A fast fixed point algorithm for independent componcnt analysis[J].Neural Computation, 1997, 9 (7): 1 483-1 492.
  • 10戴光,李伟,张颖.过程装备安全管理与检测.北京:化学工业出版社,2004.241-247.

共引文献75

同被引文献47

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部