期刊文献+

基于分子动力学的Cu_3Sn/Cu界面元素扩散行为数值模拟 被引量:1

Numerical simulation of diffusion behavior of Cu_3Sn/Cu interface based on molecular dynamics
下载PDF
导出
摘要 文中采用修正的嵌入原子势函数(modified embedded atomic method,MEAM)的分子动力学模拟,研究了无铅焊点中Cu_3Sn/Cu界面元素的扩散过程,对界面元素的扩散行为进行了分析计算,获得了界面各元素的扩散激活能,根据元素扩散的经验公式得出界面过渡区的厚度表达式.结果表明,扩散过程中主要是铜晶格中Cu原子向Cu_3Sn晶格中扩散.其中,铜晶格内原子以较慢的速率扩散,但可以深入Cu_3Sn晶格内部,Cu_3Sn中原子以较快的速率扩散,但难以进入铜晶格内部.结合阿伦尼乌斯关系和爱因斯坦扩散定律,计算得到界面处铜晶格原子的扩散激活能为172.76 k J/mol,界面处Cu_3Sn晶格中Cu原子扩散激活能为52.48 k J/mol,Sn原子扩散激活能为77.86 k J/mol. In this paper,the diffusion process of Cu_3Sn/Cu interface in lead-free solder joints was investigated using molecular dynamics (MD) technique with the modified embedded atomic method (MEAM) potentials.The diffusion behavior of different atoms was analyzed and the diffusion activation energies was obtained.In addition,the thickness of diffusion transition zone was acquired based on the empirical equation of diffusion.The simulation results indicate that the Cu atoms predominantly diffuse into the Cu_3Sn side in the process of diffusion.The Cu atoms diffuse slowly but deeply diffuse into the interior of Cu_3Sn,whereas the atoms of Cu_3Sn diffuse with high rate but hardly diffuse into the interior of Cu.Based on the Arrhenius relation and equation of Einstein,the diffusion activation energies of Cu lattice atoms at interface is 172.76 k J/mol,and the Cu and Sn atoms in Cu_3Sn lattice are 52.48 and 77.86 k J/mol,respectively.
出处 《焊接学报》 EI CAS CSCD 北大核心 2017年第8期50-54,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(51575011) 北京市自然科学基金资助项目(2162002)
关键词 微电子封装 扩散 Cu3Sn/Cu界面 分子动力学 microelectronic packaging diffusion process Cu3Sn/Cu interface molecular dynamics
  • 相关文献

参考文献4

二级参考文献39

  • 1何康生.异种金属焊接[M].北京:机械工业出版社,1986..
  • 2Warren J A, Boettinger W J, Roosen A R. Modeling reactive wetting [J]. Acta Material, 1998, 46(9) : 3247 - 3264.
  • 3Liu C Y, Tu K N. Morphology of wetting reactions of SnPb alloys on Cu as a function of alloy composition [J]. Materials Research Society, 1998, 13(1): 37-44.
  • 4Mulugeta Abtew, Guna Selvaduray. Lead-free solders in micre-electrenics [J]. Materials Science and Engineering, 2000, 27(5) : 95 - 141.
  • 5Prakash K H, Sritharan T. Interface reaction between copper and molten tin-lead solder [ J ]. Acta Material, 2001, 49 ( 13 ) : 2481 - 2489.
  • 6Jou-I Lee, Sinrt-Wen Chen, Hsiu-Yu Chan, et al. Reactive wetting between molten Sn-Bi and Ni substrate [J]. Journal of Electronic Materials,2003, 32(3) : 117 - 122.
  • 7Lee N C. Getting ready for lead-free solders [ J ]. Soldering & Surface Mount Technology, 1997, 9(2) : 65 - 68.
  • 8Tu P L, Chart Y C, Hung K C, et al. Growth kinetics of intermetallic compounds in chip scale package solder joint [ J ]. Scripta Material ,2001,44-(22) : 317 - 323.
  • 9Baskes M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B, 1992,46(5) :2727 - 2742.
  • 10Butrymowlez D B, Manning J R, Read M E. Diffusion rate data and mass transport phenomena for copper systems, part II [ R]. Washington: National Bureau of Standards, 1981.

共引文献34

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部