摘要
考虑一类二维风险模型,其中两个保险公司共同承担所有的索赔,且每个(主)索赔都会引起一个副索赔.假定两个保险公司均将其资产投资到金融市场中,其投资回报服从几何Levy过程.在索赔分布属于C族以及索赔额与索赔到达时间间隔具有某种相依结构的条件下,对该二维风险模型盈余过程的有限时破产概率进行渐近估计.
Consider a bidimensional risk model, in which two insurance companies divide between them the claims in some specified proportions, and every main claim induces a delayed by-claim. Suppose that the surpluses of the two companies are invested into portfolios whose returns follow a geometric Levy process. When the claim-size distribution is consistently-varying tailed, and the inter-arrival time and claim-size follow some dependence structure, asymptotic estimates for the ruin probabilities of this bidimensional risk model are derived.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2017年第3期283-294,共12页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
浙江省自然科学基金(LY17A010004)
教育部人文社会科学研究青年基金(17YJC910002)
浙江省一流学科A类(浙江工商大学统计学)
国家自然科学基金(11301481
11371321)
关键词
二维风险模型
投资回报
副索赔
一致变尾
破产概率
Bidimensional risk model
investment return
by-claim
consistent variation
ruinprobability