期刊文献+

米粒组织的分歧与跃迁 被引量:3

The bifurcation and transition for the granulation
下载PDF
导出
摘要 运用线性全连续场的谱理论及跃迁理论讨论了太阳米粒组织的分歧和跃迁,并且从数学上证明了米粒组织的存在性.同时在一定的假设条件下了,得到了特征值,特征向量和分歧解的表达式.最后根据模型给出了米粒组织直径的估计,同时验证了该估计与实际数据基本相符. By using the spectrum theory of the linear completely continuous Ilel(ls ana ~ranslmon theory, the bifurcation and transition of the solar granulation are studied and the existence of granu- lation is verified. With certain assumption, the eigenvalues, eigenvectors and bifurcation solution are obtained. Finally, the estimation of diameter for granulation is obtained from the model, which can fit the actual data approximately.
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2017年第3期353-360,共8页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词 米粒组织 极坐标 特征值和特征向量 跃迁 solar granulation polar coordinates the eigenvalues and eigenvectors transition
  • 相关文献

参考文献2

二级参考文献18

  • 1胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062. 被引量:12
  • 2Bridge T J, Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[ J]. Physics Letters A ,2001,284(4/5 ) : 184-193.
  • 3Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs[ J]. Future Generation Computer Systems, 2003,19(3) : 395-402.
  • 4Bridges T J. Multi-symplectic structures and wave propagation[J] .Mathematical Proceedings of the Cambridge Philosophical Society, 1997,121 ( 1 ) : 147-190.
  • 5Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [J ]. Computational Physics, 2000,157 (2) : 473-499.
  • 6Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation[ J]. Journal of Physics, A ,Mathematical and General,2000,33(18) :3613-3626.
  • 7Islas A L, Schober C M. Multi-symplectic methods for generalized Schrodinger equations[ J]. Future Generation Computer Systems ,2003,19(3) :403-413.
  • 8Hirota R. Exact envelope-soliton solutions of a nonlinear wave [J ]. Journal of Mathematical Physics, 1973,14 ( 7 ) : 805- 809.
  • 9Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices[ J]. Journal of Mathematical Physics, 1973,14(7) :810-814.
  • 10Nimmo J J C,Freeman N C.A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronsldan[J]. Physics Letters A, 1983,95( 1 ) :4-6.

共引文献11

同被引文献11

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部