期刊文献+

磁敏固支载流单壁碳纳米管在轴向磁场中的振动特性 被引量:6

Vibration characteristics of magnetically sensitive clamped-clamped carbon nanotubes conveying fI uid subjected to a longitudinal magnetic field
下载PDF
导出
摘要 以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑了管型区域内滑移边界条件以及碳纳米管的小尺度效应,应用哈密顿原理获得轴向磁场中磁敏载流单壁碳纳米管(SWCNT)的振动控制方程以及边界条件;依靠微分变换法(DTM)对此高阶偏微分方程进行求解,通过数值计算研究了单壁固支载流碳纳米管的振动与失稳问题。结果表明:轴向磁场强度H_x、克努森数K_n、小尺度参数m都会对系统振动频率以及系统稳定区域产生影响,其中K_n及m越大,系统基频越低,稳定区域越小;而当外加轴向磁场强度达到一定数值后,磁场作用将使系统的稳定性明显加强。 Based on the nonlocal elastic theory, a nonlocal Euler-Bernoulli beam model is utilized to investigate the effect of a longitudinal magnetic field on the transverse vibration of magnetically sensitive clamped-clamped carbon nanotubes(SWCNTs) with conveying fluid. The slip boundary conditions of CNT conveying fluid are considered based on Knudsen number(K_n). The equation of motion and associated boundary conditions are derived by using Hamilton's principle. In the solution part the differential transformation method(DTM) is used to solve the higher-order differential equations of motion. The effects of longitudinal magnetic field, nonlocal parameter and Knudsen number on the vibration frequency and divergence instability of SWCNT conveying fluid are investigated. Numerical results from the model show that the fundamental natural frequency and stability region of the SWCNT are affected by the small scale effect, Knudsen number and longitudinal magnetic field. It is found that with increase in the small scale effect and Knudsen number the fundamental natural frequency and stability become less pronounced, but the good stability are observed when the longitudinal magnetic field increased to a certain degree.
出处 《应用力学学报》 CSCD 北大核心 2017年第4期634-640,共7页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金项目(51608401) 冶金工业过程系统科学湖北省重点实验室(武汉科技大学)开放基金(Y201520)
关键词 轴向磁场 载流碳纳米管 非局部弹性理论 微分变换法(DTM) 克努森数 longitudinal magnetic field fluid-conveying carbon nanotubes nonlocal elastic theory differential transformation method(DTM) Knudsen parameter
  • 相关文献

参考文献2

二级参考文献28

  • 1朱年勇,于虹,黄庆安.纳机械谐振器的非线性特性分析[J].电子器件,2005,28(1):35-37. 被引量:3
  • 2宋震煜,于虹.纳米梁非线性振动的动力学分析[J].微纳电子技术,2006,43(3):145-149. 被引量:6
  • 3Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [ J ]. Journal of Applied Physics, 1983, 54 (9) : 4703 -4710.
  • 4Wang C M, Kitipomchai S, Lira C W. Beam bending solutions based on nonlocal Timoshenko beam theory [ J ]. Journal of Engineering Mechanics, 134 ( 6 ), 2008: 475 481.
  • 5Ke L L, Xiang Y, Yang J. Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory [ J ]. Computational Materials Science ,2009,47:409 - 417.
  • 6Yang J, Ke L L, Kitipomchai S. Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory [J]. Physica E ,2010,42:1727 - 1735.
  • 7Pradhan S C, Murmu T. Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever[J]. Physica E,2010,42:1944 -1949.
  • 8Wang C M, Zhang Y Y, Kitipornchai S. Vibration of initially stressed micro and nano-beams [ J ]. International Journal of Structural Stability and Dynamics, 2007,7 (4) : 555 -570.
  • 9Evoy S. Carr D W. et al. Nanofabrication and electron static operation of single crystal silicon paddle oscillators [ J ]. Journal of Applied Physics, 1999, 86 : 6072 - 607.
  • 10徐临燕,栗大超,胡小唐,黄玉波.基于原子力显微镜的纳米梁杨氏模量的测量[J].天津大学学报,2007,40(7):816-820. 被引量:9

共引文献9

同被引文献22

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部