期刊文献+

稀疏的归一化功放模型及预失真应用 被引量:1

Sparse normalized modeling of power amplifier and its predistortion application
下载PDF
导出
摘要 针对射频功放的非线性特性进行了研究,提出一种新的稀疏化的Volterra级数模型。该模型基于压缩感知算法,将稀疏系统的辨识等效为信号的重构问题,利用正则正交匹配(ROMP)算法对核系数进行稀疏化并选择出活跃的核系数。将提出的模型与记忆多项式(MP)模型、通用记忆多项式(GMP)模型进行比较,较MP模型的建模精度提升10.7 dB,模型系数减少25%;较GMP模型的建模精度提升3.9 dB,模型系数减少57.65%。仿真结果表明,提出的方法实现了良好的预失真线性化性能,极大地降低了模型系数,优于传统的功放行为模型,由此验证对功放的线性化技术发展具有参考价值。 Aiming at the nonlinear characteristic of RF power amplifier, this paper presented a new sparse Volterra series model. The model was based on the compressed sensing algorithm, the identification of the sparse system was equivalent to the signal reconstruction problem, and the kernel coefficient was sparse, used the regular orthogonal matching (ROMP) algorithm to select the active kernel coefficient. Compared with the memory polynomial(MP) model and the general memory polynomial (GMP) model,the proposed model improved the modeling accuracy by 10.7 dB and model coefficient decreased by 25% compared with MP model and it improved the modeling accuracy of 3.9 dB, but the model coefficient decreased by 57.65% compared with the GMP model. The simulation results show that the proposed technique predistorters achieve similar linearization performance while requiting significantly less coefficients than the traditional models. This verification of power amplifier linear technology development has the reference value.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期3032-3035,共4页 Application Research of Computers
基金 国家自然科学基金面上项目(61372058) 辽宁省教育厅科学研究一般项目(L2015209) 辽宁省高等学校重点实验室资助项目(LJZS007)
关键词 功率放大器 行为模型 压缩感知 数字预失真 匹配追踪 power amplifier behavioral modeling compressed sensing digital predistortion matching pursuit
  • 相关文献

参考文献4

二级参考文献74

  • 1Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 3Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 4Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 5Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 6Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 7Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 8Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 9Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.
  • 10Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM Journal on Scientific Computing,2001,43(1):129-159.

共引文献295

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部