期刊文献+

基于非局部结构张量的SSIM图像质量评价方法 被引量:9

SSIM image quality assessment based on nonlocal structure tensor
下载PDF
导出
摘要 针对基于局部运算的图像质量评价方法的局限性,提出一种基于非局部结构张量的SSIM图像质量评价方法。图像在各像素点的非局部结构张量的主特征值大小很好地反映了该像素点的结构强度信息,特别是纹理结构等细节信息;主特征向量的方向反映了该像素点的结构方向信息。利用退化图像和参考图像的非局部结构张量的主特征值相似度刻画结构强度相似度,利用主特征向量夹角的余弦刻画结构方向相似度。数值实验结果显示,利用该方法对TID2008数据库中的图像进行评价的平均运算时间为778.43 s,且评价结果与主观评价接近。 For the weakness of the image quality assessment methods based on local computation, this paper proposed a nonlocal structure tensor based SSIM image quality assessment method. The primal eigenvalue of nonlocal structure tensor at each pixel well reflected the structural strength information, especially the details information such as texture and so on. And the orientation of the primal eignvector reflected the structural direction information. This paper used the similarity of the primal eigenvalues to describe the consistency of the structural strength between the reference image and the distorted image, and the cosine of the intersection angle between the primal eignvectors to characterize the similarity of the structural direction. Numerical experiment shows that the average computing time is 778.43 s by using this method to assess the images in TID2008 data- base. And the assessment result is close to the subjective assessment.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期3162-3164,3170,共4页 Application Research of Computers
基金 陕西省教育厅专项科研计划项目(15JK1371) 陕西省自然科学基础研究计划项目(2014JM1018) 国家自然科学基金资助项目(61472303) 中央高校基本科研业务费专项资金资助项目(NSIY21)
关键词 图像质量评价 结构相似性 非局部结构张量 结构强度 结构方向 image quality assessment(IQA) SSIM nonlocal structure tensor structural strength structural direction
  • 相关文献

参考文献2

二级参考文献20

  • 1刘德连,张建奇.基于纹理分割的遥感图像的变化探测[J].光学学报,2006,26(8):1177-1181. 被引量:8
  • 2G. Aubert, P. Kornprobst. Mathematical Problems in Image Processing[M]. Stuttgart: Springer-Verlag, 2002.
  • 3P. Perona, J. Malik. A scale space and edge detection using anisotropic diffusion[J]. IEEE Transactions on PAMI, 1990,12(07): 629-639.
  • 4F. Catte, P. L. Louis, J. M. Morel et al.. Image selective smoothing and edge-detection by nonlinear diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(01): 182-193.
  • 5L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60:259-268.
  • 6J. Weickert. Anisotropic diffusion in image processing [M]. Stuttgart: Springer-Verlag, 1998.
  • 7Wang Weiwei, Feng Xiangchu. Anisotropic diffusion with nonlinear structure tensor[J]. Multiscale Model. Simul. , 2008, 7(02) : 963-977.
  • 8Bai Jian, Feng Xiangchu. Fractional-order anisotropic diffusion for image denoising [J]. IEEE Transactions on Image Processing, 2007, 16(10): 2492-2502.
  • 9G. Gilboa, S. Osher. Nonlocal operators with applications to image processing[J]. Multiscale Model. Simul. , 2008, 7 (3) 1005-1028.
  • 10S. Kindermann, S. Osher, P. Jones. Deblurring and denoising of images by nonlocal functionals[J]. Multiscale Model. Simul. , 2005, 4(4) : 1091-2115.

共引文献13

同被引文献63

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部