期刊文献+

固定设计异方差非参数回归模型的预测方法 被引量:2

Prediction Methods for Nonparametric Regression Models with Fixed Design and Heteroscedasticity
下载PDF
导出
摘要 文章针对固定设计下异方差非参数回归模型,考虑了基于多项式样条的三种预测方法,即非外推法、线性外推法和非线性外推法。模拟结果表明非外推预测法的均方根误差(RMSE)和平均绝对误差(MAE)的均值最大,而线性外推法的RMSE和MAE的均值略小于非线性外推法的RMSE和MAE的均值。实证分析结果显示:非外推预测法的平均绝对百分比误差(MAPE)、RMSE和MAE最大,线性外推法的MAPE、RMSE和MAE最小。这表明整体上外推法优于非外推法,而线性外推法是简单可行的。 Aimed at nonparametric regression models with fixed design and heteroscedastic errors, this paper considers three prediction methods based on polynomial spline, i.e. non-extrapolation method, linear extrapolation method and nonlinear extrapolation method. Simulation results show that the average values of root mean squared error (RMSE) and mean absolute error (MAE) of non-extrapolation method are the biggest; while the average values of RMSE and MAE of linear extrapolation method are slightly smaller than those of nonlinear extrapolation method. The empirical analysis result indicates that the non-extrapolation method gives the biggest mean absolute percentage error (MAPE), RMSE and MAE, and the MAPE, RMSE and MAE of linear extrapolation method are the smallest ones, which suggests that on the whole the extrapolation methods outperform the non-extrapolation method, and that the linear extrapolation is a simple and feasible method.
作者 武新乾 程芳
出处 《统计与决策》 CSSCI 北大核心 2017年第17期76-79,共4页 Statistics & Decision
基金 国家自然科学基金资助项目(11501167 11601126) 河南省国际科技合作计划项目(134300510034)
关键词 非参数回归模型 多项式样条方法 预测方法 nonparametric regression model polynomial spline method prediction method
  • 相关文献

参考文献2

二级参考文献23

  • 1唐林俊,杨虎,张洪阳.核密度估计在预测风险价值中的应用[J].数学的实践与认识,2005,35(10):29-35. 被引量:16
  • 2杨争林,唐国庆,宋燕敏,曹荣章.改进的基于聚类分析的超短期负荷预测方法[J].电力系统自动化,2005,29(24):83-86. 被引量:25
  • 3牛东晓,谷志红,邢棉,王会青.基于数据挖掘的SVM短期负荷预测方法研究[J].中国电机工程学报,2006,26(18):6-12. 被引量:120
  • 4Charytoniuk W, Chen M S, Olinda P Van. Nonparametrie regression based short-term load forecasting[J]. IEEE Transactions on Power Systems,1998,13(3) :725-730.
  • 5Wolfgang Hardle, Rong Cheng. Nonparametric time analysis: a selective review with examples [J]. Journal of Nonparametric Statistics,1995,20(5):157- 184.
  • 6Dag Tjostheim, Bjorn H. Nonparametric identification of non- linear time series:selecting significant lags[J]. Journal of the American Statistical Association, 1994,89(428) : 1410- 1419.
  • 7Jan G, De Gooijer, Dawit gerom. Kernel based multistep ahead predictions of the US short term interest rate[J]. Journal of Forecasting, 2000,19(4) : :335-353.
  • 8Moschini G, Prescott D M, Stengos T. Nonparametric kernel estimation applied to forecasting:an evaluation based on the bootstrap[J]. Empirical Economics, 1988,13(3) : 141-154.
  • 9Sebastiano Manzan,Dawit Zerom. A bootstrap based non-parametric forecast density [J]. International Journal of Forecasring,2008,24(3) :535- 550.
  • 10陈希儒 柴根象.非参数统计教程[M].上海:华东师范大学出版社,1993.247-255.

共引文献19

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部