期刊文献+

一种近似的K最近邻图算法 被引量:1

Approximate algorithm based on k-nearest neighbor graph
下载PDF
导出
摘要 针对K最近邻(KNN)图方法在数据挖掘和机器学习方面的问题,文中提出一种高效的基于K最近邻图的近似算法.首先随机生成一个KNN图近似值;对空间进行随意层次划分,构建一个近似近邻图,然后与KNN图近似值合并生成一个更准确的图;最后对生成的更准确的图进行近邻传播,进一步提高准确度.通过采用各种真实数据集和高维度合成数据进行实验研究,证实文中提出的算法性能优于先进的KNN图构造方法. In view of the k-nearest neighbor( KNN) graph problems in data mining and machine learning,an efficient approximate algorithm is proposed based on the k-nearest neighbor graph. First,a random graph KNN approximation is generated; the space is divided at random level to construct an approximate nearest neighbor graph,and then approximate KNN value map they are combined to build a more accurate map; finally,neighbor propagation of the more accurate nearest neighbor graph further improves the accuracy. Experiments are performed by using real data sets and high-dimensional synthetic data,and the result shows that the proposed algorithm has better performance than the advanced KNN method.
作者 邹蕾
出处 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2017年第4期513-518,554,共7页 Journal of Jiangsu University of Science and Technology:Natural Science Edition
关键词 K最近邻图 多重随机划分 近似算法 近邻传播方法 k-nearest neighbor graph multiple random division approximate algorithm neighbor propagation method
  • 相关文献

参考文献2

二级参考文献26

  • 1Nister D, Stewenius H. Scalable recognition with a vocabulary tree [C]// 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognitior:New York, USA: IEEE Press, 2006, 2:2 161-2 168.
  • 2Philbin J, Chum O, Isard M, et al. Object retrieval with large vocabularies and fast spatial matching[C]// IEEE Conference on Computer Vision and PatternRecognition. Minneapolis, USA= IEEE Press, 2007.. 1 8.
  • 3Tuytelaars T, Lampert C 14, Blaschko M B, et al. Unsupervised object discovery: A comparison [J]. International Journal of Computer Vision, 2010, 88(2): 284- 302.
  • 4Philbin J, Zisserman A. Obiect mining using a matching graph on very large image collections[C]// Proceedings of the Inidan Conference on Computer Vision, Graphics &Image Processing. Bhubaneswar, India: IEEE Press, 2008: 738-745.
  • 5Li X W, Wu C C, Zach C, et al. Modeling and recognition of landmark image collections using iconic scene graphs [C]// Proceedings of 10th European Conference on Computer Vision. Marseilie, France: Springer, 2008: 427-440.
  • 6Torralba A, Fergus R, Freeman W T. 80 million tiny images: A large data set for nonparametric object and scene recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 ( 11 ) .. 1 958-1 970.
  • 7Lloyd S. Least squares quantization in PCM[J]. IEEE Transactions on Information Theory, 1982,28(2) : 129-136.
  • 8Selim S Z, Ismail M A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1) : 81-87.
  • 9Jain A K. Data clustering: 50 years beyond Keans[J]. Pattern Recognition Letters, 2010,31(8) ..651- 666.
  • 10Judd D, McKinley P K, Jain A K. Large>scale parallel data clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(8): 871-876.

共引文献2

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部