期刊文献+

LNG独立C型液舱晃荡特性试验研究 被引量:5

Experimental study of sloshing pattern on LNG independent C type tank
下载PDF
导出
摘要 与LNG运输船不同,LNG加注船的液舱会经常处于部分装载状态,故液舱晃荡问题必须予以考虑.由于目前LNG加注船主要采用独立C型液舱,针对该种形式液舱,使用模型试验,系统研究了不同载液高度、激励频率及激励幅值影响下的晃荡情况.讨论分析了其晃荡时自由液面的波形特征,对中间液深工况下,自由液面在舱顶的影响下出现的波形进行分类.通过对晃荡荷载的统计分析,发现产生最大荷载的激励频率与理论固有频率有所偏差,且该偏差会随着液位的升高而降低.此外,在荷载空间分布方面,载液高度为0.6 D_i(D_i为模型液舱直径)时,自由液面在封头处破碎严重,会对液舱封头上部产生较大冲击;而在0.8 D_i载液高度时,应充分考虑0.8f_n(f_n为理论固有频率)至1.2f_n激励区间内的顶部冲击荷载. Being different from the LNG carrying ship , the tanks of LNG fuel bunker vessel arealways partially loaded,so the sloshi ng must be cons ider ed. Since independent C used in LNG fuel bunker vessel at present, model experiments with this type of tank are carried outfor sloshing research. The test conditions cover different filling levels, excitation frequencies and excitation amplitudes. The characteristic of free surface shape is discussed and analyzed.Furthermore, in the intermediate depth, classification of wave shapes, which is in fluenced by tank roof,is identified. With the statistical analysis of sloshing load, it is found that there is deviat io nbetween the excitation frequency inducing maximum load and theoretical natural frequency. Thisdeviation will reduce as the filling level increases. In addition, on aspect of spatial distribution of sloshing load,the free surface under 0. 6Di(Di is the diameter of the model tank ) breaks up and large impact pressure will be expected at upper part head ; un roof impact pressure with the excitation frequency between 0. 8/n(fn is theoretical natural frequency )and 1. 2fn should be taken full account.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2017年第5期467-475,共9页 Journal of Dalian University of Technology
基金 工业和信息化部高技术船舶科研计划资助项目(工信部联装[2014]498号) 海洋可再生能源专项资金资助项目(QDME2013ZB01) 国家自然科学基金资助项目(51609036) 中国博士后科学基金资助项目(2014M561234 2015T80256) 辽宁省博士科研启动基金资助项目(201501176) 中央高校基本科研业务费专项资金资助项目(DUT16RC(4)26)
关键词 晃荡 独立C型液舱 LNG加注船 试验研究 sloshing independent Ctype tank LNG fuel bunker vessel experimental study
  • 相关文献

参考文献6

二级参考文献55

  • 1朱仁庆.液体晃荡及其与结构的相互作用[D].无锡:中国船舶科学研究中心,2001
  • 2徐兴平,中国海洋平台,1995年,2期,154页
  • 3Hamlin N A,Trans SNAME,1986年,94卷,159页
  • 4陈穗康,中国造船,1984年,85期,35页
  • 5中国船级社.散装运输液化气体船舶构造与设备规范[S].北京:人民交通出版社,2005.
  • 6陈穗康,顾树华,戴李民.矩形水舱流体晃荡的水动力特性的试验研究[J].中国造船,1984,(85):35-41.
  • 7GAVORY T., DE SEZE P. E. Sloshing in membrane LNG carriers and its consequences from a designer’s perspective[C]. Proceedings of the 19th International Offshore and Polar Engineering Conference. Osaka, Japan, 2009, 13-20.
  • 8ABRAMSON H. N. The dynamic behavior of liquids in moving containers[R]. NASA Report, SP 106, 1966.
  • 9ABRAMSON H. N? BASS R. L. and FALTINSEN O. M. et al. Liquid slosh in LNG carriers[C]. The 10thSymposium on Naval Hydrodynamics. Cambridge, USA, 1974, ACR-204, 371-388.
  • 10HAMLIN N. A., LOU Y. K. and MACLEAN W. M. et al. Liquid sloshing in slack ship tanks-Theory, observations, and experiments[J]. SNAME Transactions, 1986, 94: 159-195.

共引文献55

同被引文献26

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部