期刊文献+

笛卡尔图的无圈边染色

Acyclic edge coloring of Cartesian graphs
下载PDF
导出
摘要 研究图的结构时会发现,很多结构相对复染的图基本上是由一些结构简单的图通过笛卡尔积运算得到的,所以,可以根据笛卡尔积图的结构特征把两个简单图和进行笛卡尔积运算,其中|V(G)|=n,|V(H)|=m,可以把笛卡尔积图G×H分解成为m个不相交的G的拷贝和n个不相交的H的拷贝,用图分解法和染色构造法研究一些笛卡尔积图的无圈边染色包括路与圈、轮、扇的笛卡尔积图无圈边染色数. Study the structure map will be found a lot of structure is relatively complex figure basically by some simple structure diagram by Descartes product operation, so we can according to the structural characteristics of Descartes product graphs, two simple graphs and Descartes integral, which we can put the Descartes product G - H is decomposed into disjoint copies of the M copy of the G and N disjoint H, using graph decomposition method and construction method of dyeing acyclic edge coloring of some Descartes product including Descartes road and ring, wheel, fan of the product graph acyclic edge chromatic number of dye.
作者 董秀芳
出处 《齐齐哈尔大学学报(自然科学版)》 2017年第6期92-94,共3页 Journal of Qiqihar University(Natural Science Edition)
关键词 笛卡尔积图 无圈边染色数 cartesian product graph acyclic edge coloring number
  • 相关文献

参考文献2

二级参考文献8

  • 1陈东灵,经济数学,1998年,15卷,3期,47页
  • 2ACBurris and RHSchelp. Vertex-distinguishing proper edge colorings[J].J of Graph Theory,1997, 26:73-82.
  • 3CBazgan, AHarkat-Benhamdine, Hao Li and MWoz′nik.On the Vertex-distinguishing proper edge colorings of graphs[J].J Combin Theory,1999,75:288-301.
  • 4PNBalister.BBollobas and RHSchelp, Vertex-distinguishing proper edge colorings of graphs with[J]. Discrete Mathematics,2002,252:17-29.
  • 5PNBalister. OMRiordan and RHSchelp, Vertex-distinguishing proper edge colorings of graphs[J].J of Graph Theory,2003,42:95-109.
  • 6Bondy JA and Murty USR.Graph Theory with Application Macmillan, London[M].Elsevier,New York,1976.
  • 7姚兵 顾同新 张建勋译.图论中的若干专题[Z].合肥:中国科学技术大学出版社,1992..
  • 8陈学刚,王淑栋.两类笛卡尔积图的关联色数[J].山东矿业学院学报,1999,18(3):65-66. 被引量:5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部