期刊文献+

基于盲源分离的多跳频信号网台分选算法 被引量:10

A Network Sorting Algorithm Based on Blind Source Separation of Multi-FH Signal
下载PDF
导出
摘要 针对欠定条件下多跳频信号的网台分选问题,该文利用跳频信号在时频域上的稀疏性,提出了一种基于盲源分离的自适应信噪比网台分选算法。首先,用Gabor变换作为系统的时频变换建立欠定条件下跳频信号网台分选的模型;然后,采用了自适应信噪比的时频支撑点阈值设定方法寻找源信号的时频单源点,根据时频单源点的时频比矩阵估计出混合矩阵;最后,利用与信源相对功率偏差相结合的改进的子空间投影法进行网台分选。仿真实验验证了该算法在低信噪比条件下的有效性。 Aiming at the multi-FH signal sorting under undetermined condition, based on blind source separation, this paper put forward a SNR-adaptive sorting algorithm using the time-frequency sparsity of FH signal. Firstly, Gabor transformation is used as time-frequency transformation in system and sorting model is established under undetermined condition; then the adaptive-SNR threshold setting method is used to find the time-frequency single source. The mixed matrix is estimated according to the time- frequency matrix of single source; lastly, signal sorting is realized through improved subspace projection combined with relative power deviation of source. Simulation result shows the effectiveness of this method under low SNR condition.
出处 《信号处理》 CSCD 北大核心 2017年第8期1082-1089,共8页 Journal of Signal Processing
基金 国家自然科学基金(64601500)
关键词 跳频 欠定 自适应信噪比 时频单源点 网台分选 frequency-hopping (FH) under-determined adaptive-SNR time-frequency single source network sorting
  • 相关文献

参考文献8

二级参考文献88

  • 1姚瑶,赵知劲,尚俊娜.一种跳频信号网台分选方法[J].杭州电子科技大学学报(自然科学版),2009,29(1):33-36. 被引量:3
  • 2黄闯,侍洪波.基于独立分量分析(ICA)与小波变换的过程监测方法[J].吉林大学学报(工学版),2004,34(3):465-470. 被引量:3
  • 3张朝阳,曹千芊,陈文正.多跳频信号的盲分离与参数盲估计[J].浙江大学学报(工学版),2005,39(4):465-470. 被引量:21
  • 4许士敏.宽开通信侦察中多信号盲分离应用研究[J].电子对抗技术,2005,20(4):12-14. 被引量:4
  • 5科恩L.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 6科恩.时-频分析:理论与应用[M].白居宪,译.西安:西安交通大学出版社,1998.
  • 7BELOUCHRANI A, ABED-MERAIM K, CARDOSO J F, et al. A blind source separation technique using second order statistics [J]. IEEE Transactions on Signal Processing, 1997,45(2): 434 - 444.
  • 8CARDOSO J F,SOULOUMIAC. Blind beamforming for non-Gaussian signals[J]. Proceedings E IEE Radar and Signal Processing, 1993,140(6): 362-370.
  • 9KARHUNEN J. Neural approaches to independent component analysis and source separation[A]. Fourth European Symposium on Artificial Neural Networks (ESANN'96)[C]. Bruges, Belgium: D Facto Press, 1996:249 - 266.
  • 10MOUSTAKIDES G V. Optimum adaptive blind source separation algorithms [A]. Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP' 02) [C]. Orlando, Florida: IEEE,2002, 2: 1645- 1648.

共引文献55

同被引文献60

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部