期刊文献+

基于注资-有界分红的随机微分投资-再保博弈 被引量:3

Stochastic differential investment-reinsurance games with capital injection-barrier dividend
下载PDF
导出
摘要 研究存在模型风险时保险公司的最优投资-再保-注资-有界分红的策略问题.在分红与注资之差的总量现值的期望最大化的准则下,使用随机微分博弈理论建立保险公司的随机微分博弈,通过求解Hamilton-Jacobi-Bellman-Isaacs方程得到最优投资-再保-注资-有界分红策略的显式解,采用数值算例分析验证了本研究所提策略的合理性. To better reflect the insurance practice and help insurance company make more robust strategy,we investigate the optimal investment-reinsurance-capital injection-barrier dividend problem when model risk exists.Based on the criterion of maximizing the expected total present value of the difference between barrier dividend and capital injection,the stochastic differential game model is utilized based on stochastic differential game principle,and the optimal policy is obtained by solving the Hamilton-Jacobi-Bellman-Isaacs( HJBI) equation. The closed-form optimal investment-reinsurance-capital injection-barrier dividend strategies are derived. The economic analyses illustrate the reasonableness of the obtained theoretical results.
作者 孙宗岐 刘宣会 陈思源 冀永强 娄建军 Sun Zongqi Liu Xuanhui Chen Siyuan Ji Yongqiang Lou Jianjun() Department of Mathematics, Xi'an Siyuan University, Xi'an 710038, Shaanxi Province, P. R. China ) College of Science, Xi' an Polytechnic University, Xi'an 710048, Shaanxi Province, P. R. China)
出处 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2017年第4期364-371,共8页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(71371152) 陕西省教育厅自然科学专项基金资助项目(2016JK2150) 西安思源学院2016年度科研基金资助项目(XASY-B1617)~~
关键词 运筹学 对策论 随机微分博弈 Hamilton-Jacobi-Bellman-Isaacs方程 投资策略 比例再保险策略 注资-有界分红 模型风险 operations research game theory stochastic differential game Hamilton-Jacobi-Bellman-Isaacs equation investment strategies proportional reinsurance capital injection-barrier dividend model risk
  • 相关文献

参考文献6

二级参考文献42

  • 1吉小东,汪寿阳.中国养老基金动态资产负债管理的优化模型与分析[J].系统工程理论与实践,2005,25(8):50-54. 被引量:11
  • 2Browne, S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimi- zing the probability of ruin. Mathematics of Operations Research, 1995,20 (4) :937 -958.
  • 3Hipp, C. , Plum, M. Optimal investment for insurers. Insurance Mathematics and Economics, 2000,27 (2) : 215 -228.
  • 4Liu, C. , Yang, H. Optimal investment for an insurer to minimize its probability of ruin. North American Actuarial Journal,2004,8 (2) : 11 - 31.
  • 5Mataramvura, S. , oksendal, B. Risk minimizing portfolios and HJBI equations for stochastic differential games. Stochastics An International Journal of Probability and Stochastic Processes ,2008,4:317 - 337.
  • 6Promislow, D. S. , Young, V. R. ,2005. Minimizing the probability of ruin when claims follow Brownian motion with drift. North American Actuarial Journal. 9, (3) : 109 - 128.
  • 7Schmidli. Stochastic Control in Insurance. Springer,2007.
  • 8Zhang, X. , Siu, T. K. Optimal investment and reinsurance of an insurer with model uncertainty. Insurance: Mathematics and Economics,2009,45,81 -88.
  • 9Chan W S, Yang H L, Zhang L Z. Some results on ruin probabilities in a two-dimensional risk model [J]. Insurance: Mathematics and Economics, 2003, 32(3): 345-358.
  • 10Dang L F, Zhu N, Zhang H M. Survival probability for a two-dimensional risk model [J]. Insurance: Mathematics and Economics, 2009, 44(3): 491-496.

共引文献30

同被引文献13

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部