期刊文献+

多传感器的移动机器人可定位性估计与自定位 被引量:9

Self-localization of mobile robot in dynamic environments based on localizability estimation with multi-sensor observation
下载PDF
导出
摘要 针对有人干扰的动态室内环境,利用可定位性估计理论提出一种RGB-D传感器辅助激光传感器的移动机器人可靠自定位方法。利用RGB-D传感器信息快速检测人的位置区域,并通过坐标转换计算激光扫描数据中的动态障碍物影响因子,结合离散化Fisher信息矩阵在线估计观测信息的可定位性矩阵;同时通过预测模型协方差矩阵评价里程计信息的可靠性,从而动态补偿观测信息对粒子集的影响。在典型含多人运动的动态室内环境中实验,结果验证了本文方法能够提高机器人自定位的准确性和可靠性。 Based on the localizability estimation theory, in this paper, we propose a new method for the reliable self-localization of mobile robots in a disturbed dynamic indoor environment by the adoption of an RGB-D sensor to assist the laser scanner. People' s location areas are rapidly detected in RGB-D data, which are then transformed to the laser sensor coordinate to compute the influence of the dynamic obstacles on the laser data. In combination with the discrete Fisher information matrix, we estimate the localizability matrix of the observation information online. In addition, we assess the reliability of the information in odometers by the covariance matrix of the prediction model, thereby dynamically compensating for the effect of the observation information on the particle set. We conducted experiments in a dynamic indoor environment and the results confirm the accuracy and reliability of the proposed robot localization method.
作者 孙自飞 钱 马旭东 戴先中 SUN Zifei QIAN Kun MA Xudong DAI Xianzhong(School of Automation, Southeast University, Nanjing 210096, China Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing 210096, China)
出处 《智能系统学报》 CSCD 北大核心 2017年第4期443-449,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61573100,61573101) 中央高校基本科研业务费专项基金(2242013K30004)
关键词 动态环境 自主定位 RGB-D传感器 Fisher信息矩阵 人体检测 可定位性 在线估计 移动机器人 localizability dynamic online environment self-localization RGB-D sensor Fisher information matrix people-detecting estimation mobile robot
  • 相关文献

参考文献3

二级参考文献23

  • 1郭文艳,韩崇昭,雷明.迭代无迹Kalman粒子滤波的建议分布[J].清华大学学报(自然科学版),2007,47(z2):1866-1869. 被引量:10
  • 2熊伟,何友,张晶炜.多传感器顺序粒子滤波算法[J].电子学报,2005,33(6):1116-1119. 被引量:11
  • 3Fox D, Burgard W, Thrun S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Intelligence Research, 1999, 11 : 391-427.
  • 4Wang C C, Thorpe C, Thrun S. Online simultaneous localization and mapping with detection and tracking of moving objects: Theory and results from a ground vehicle in crowded urban areas[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2003: 842-849.
  • 5Yang S W, Wang C C. Feasibility grids for localization and mapping in crowded urban scenes[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2011: 2322-2328.
  • 6Bobrovsky B, Zakai M. A lower bound on the estimation error for Markov processes[J]. IEEE Transactions on Automatic Control, 1975, 20(6): 785-788.
  • 7Doucet A, de Freitas N D, Gordon N, et al. Sequential Monte Carlo in practice[M]. Berlin, Germany: Springer-Verlag, 2001.
  • 8Antonelli G, Chiaverini S, Fusco G. A calibration method for odometry of mobile robots based on the least-squares technique: Theory and experimental validation[J].IEEE Transactions on Robotics, 2005, 21(5): 994-1004.
  • 9Kleeman L. Advanced sonar and odometry error modeling for simultaneous localisation and map building[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2003: 699-704.
  • 10Roecker J A, McGillem C D. Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 447-449.

共引文献12

同被引文献73

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部