摘要
研究了用经验似然的方法来研究带有缺失数据的半参数非线性模型的统计诊断问题。首先,在响应变量完全随机缺失下,利用修正借补的方法处理缺失数据,从而得到完全样本;然后用核估计方法对未知函数进行估计。其次,基于数据删除模型给出了参数的一步近似估计,提出了经验Cook距离以及标准化残差分析,进而找出异常点和强影响点。最后,通过实例对带有缺失数据的非线性半参数模型进行统计分析来验证以上方法的可行性和有效性。
Present a unified diagnostic method based on empirical likelihood for the semi-parametric nonlinear regression models with missing data. First,assume that the responses are missing completely at random; impute missing data and get complete sample. Then,through kernel estimation to estimate the unknown function,and the parameter estimate equation based on the experience of application of likelihood methods to estimate. Experience based on the deletion model proposed experience like natural cook distance,and standardized residuals,then find outliers and strong impact point. Finally,a real data is given to illustrate the validity of statistical diagnostic measures.
出处
《贵州师范大学学报(自然科学版)》
CAS
2017年第4期89-94,共6页
Journal of Guizhou Normal University:Natural Sciences
基金
国家自然科学基金(11271189)
关键词
半参数非线性模型
缺失数据
经验似然估计
异常点
伪残差
semi-parametric nonlinear regression model
missing data
empirical-likelihood
outliers
pseudo-residuals