期刊文献+

物料输送智能监控中多运动目标跟踪方法研究 被引量:1

Research on Multiple Objects Tracking Method for Intelligent Monitoring of Material Handling
下载PDF
导出
摘要 面向运动物料智能监控的需求,提出了一种多运动目标视觉跟踪方法。在运动目标检测中,将基于边缘检测的三帧差法和背景减法相结合,提高了检测目标轮廓的完整性,同时改善了目标的空洞现象和图像的噪点问题,为运动目标跟踪提供了有效的数据基础;基于数学形态学和面积阈值去噪对目标区域进行检测、分割、分类与标记,进一步结合卡尔曼滤波预测对多个运动目标同时进行跟踪与定位。实验表明:提出的多运动目标跟踪方法能够准确地对多个运动物料进行视觉检测与跟踪,同时能够满足系统可靠性与实时性要求。 Focused on needs of the intelligent monitoring of moving materials, a visual tracking method of multiple moving objects is proposed. In detection of moving objects, edge detection based three frames difference was combined with background subtraction, the integrality of the detected objects outline was improved, meanwhile the cavitation of the objects and the image noise were reduced, so the more effective data foundation was provided for moving objects tracking. The detection, segmentation, classification and marker for target areas were based on mathematical morphology and the area threshold denoslng, and Kalman filter prediction was further com- bined for tracking and positioning of multiple moving objects simultaneously. The experiment results show that the proposed method can visually detect and track multiple materials precisely, meanwhile the reliability and real-time performance requirements are guaranteed.
出处 《机床与液压》 北大核心 2017年第17期27-31,43,共6页 Machine Tool & Hydraulics
基金 国家自然科学基金资助项目(51175145)
关键词 运动物料 智能监控 多运动目标 视觉跟踪 Moving material Intelligent monitoring Multiple moving objects Visual tracking
  • 相关文献

参考文献3

二级参考文献20

  • 1章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 2Gavrila D M. The visual analysis of human movement: A survey[J]. Computer Vision and Image Understanding, 1999, 73(1 ) : 82-98.
  • 3Fejes S, Davis L S. What can projections of flow fields tell us about the visual motion [A]. In: Proceeding of International Conference on Computer Vision[ C], Bombay, India,1998 : 979-986
  • 4Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Interface,2000, 22(3) : 266-280.
  • 5Cucchiara R, Piccardi M, Prati A. Detecting moving objects,ghosts, and shadows in video streams [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25 (10) : 1337-1342.
  • 6Toyama K, Krumm J, Brumitt B, et al. Wallflower: Principles and practice of background maintenance[ A]. In: Proceedings of the Seventh International Conference on Computer Vision [ C ], Corfu, Greece, 1999: 255-261.
  • 7Wren C, Azarhayejani A, Darrell T, Pentland A P. Pfinder: realtime tracking of the human body [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 780-785.
  • 8Stauffer C, Grimson W E L. Adaptive background mixture models for real-time traeking[A]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], Fort Collins, Colorado, USA, 1999: 246-252.
  • 9Elgammal A, Hanvood D, Davis S. Nonparametric model for background subtraction [A]. In: Proceedings of European Conference on Computer Vision [ C ]. Dublin, Ireland, 2000 : 751-767.
  • 10Spagnolo P, DOrazio T, Leo M, et al. Moving object segmentation by background subtraction and temporal analysis[J] Image and Vision Computing, 2006, 24(5): 411-423.

共引文献40

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部