期刊文献+

一类具有脉冲捕食食饵系统的动力学分析

Dynamic analysis of a predator-prey system with impulse
下载PDF
导出
摘要 讨论一类具有脉冲效应的反应扩散三种群捕食系统在齐次Neumann边界条件下的动力学行为,利用比较方法,得到了该系统的持久性,以及周期解存在和渐近稳定的充分条件. A impulsive three-species reaction-diffusion predator-prey system with homogeneous Neumann boundary condition is investigated.Based on the comparison arguments,the permanence of the system is established,and the existence and asymptotic stability of periodic solution of the system are also given.
作者 蒲武军
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2017年第5期5-11,共7页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11371179) 陇南市2016年科技指导性计划资助项目(2016-23) 陇南师专2016年度教学改革项目(JXGG201636)
关键词 捕食系统 持久性 周期解 反应扩散 脉冲 predator-prey system permanence periodic solution reaction-diffusion impulsive
  • 相关文献

参考文献2

二级参考文献36

  • 1Hsu Sze-bi, HWANG Tzy-wei. Global stability for a class of predator-prey systems[J]. SIAM J Appl Math, 1995, 55(3): 763-783.
  • 2KUANG Yang, BERETTA E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998, 36(4):389-406.
  • 3XIAO Dong-mei, RUAN Shi-gui. Global dynamics of a ratio-dependent predator-prey system[J]. J Math Biol, 2001, 43(3): 268-290.
  • 4Hsu Sze-bi, HWANG Tzy-wei, KUANG Yang. Global analysis of the Michaelis-Menten-type ratiodependent predator-prey system[J]. J Math Biol, 2001, 42(6): 489-506.
  • 5WANG Lin-lin, LI Wan-tong. Periodic solutions and permanence for a delayed nonautonomous ratiodependent predator-prey model with Holling type functional response[J]. J Comput Appl Math, 2004, 162(2): 341-357.
  • 6LIU Xiu-xiang, HUANG Li-hong. Permanence and periodic solutions for a diffusive ratio-dependent predator-prey system[J]. Appl Math Modelling, 2009, 33(2): 683-691.
  • 7AKHMET M U, BEKLIOGLU M, ERGENC T, et al.An impulsive ratio-dependent predator-prey system with diffusion[J]. Nonlinear Anal RWA, 2006, 7(5): 1 255-1 267.
  • 8PANG P Y H, WANG Ming-xin. Qualitative analysis of a ratio-dependent predator-prey system with diffusion[J]. Proc Roy Soc Edin A, 2003, 133(4): 919-942.
  • 9DAI Bin-xiang, Su Hua, Hu Dian-wang. Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse[J]. Nonlinear Anal, 2009, 70(1): 126-134.
  • 10HE Meng-xin, CHEN Feng-de. Dynamic behaviors of the impulsive periodic multi-species predatorprey system[J]. Comput Math Apple 2009, 57(2): 248-265.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部