期刊文献+

超奈奎斯特信号载波频偏估计的梯度下降算法 被引量:4

Gradient Descent Algorithm for Frequency Offset Estimation of Faster-Than-Nyquist Signal
下载PDF
导出
摘要 超奈奎斯特(Faster-than-Nyquist,FTN)传输技术是一种基于时域压缩的信号调制技术,具有更高的传输速率及频带利用率,但是却引入了无限长的码间串扰(inter-symbol interferences,ISIs),这对载波频偏估计提出了新的挑战。对于FTN信号的频偏估计,传统算法在门限和精度等方面都有所下降。本文将梯度下降算法应用到载波频偏估计中,通过迭代搜索的方式,获得对频偏的精确估计。估计过程中直接通过数据部分进行估计,不需要借助额外的导频序列。仿真结果表明,梯度下降法与传统算法在性能上相比有了较好的改善,虽然具有较多的迭代次数和运算量,但是却能够较好地适应FTN信号的特性。梯度下降法不仅在门限范围内更靠近克拉美罗界(Cramer-Rao bound,CRB),而且在整个频段上具有更稳定的性能。 Faster-than-Nyquist (FTN) signaling is a kind of signal modulation technique, which is based on the compres- sion in time domain and could achieve higher transmission rate and bandwidth efficiency. However, it would introduce infi- nite inter-symbol interferences (ISis), which would bring a new challenge for carrier frequency offset estimation. The per- formance of traditional estimators would reduce in b'q'N signaling system. In this paper, the gradient descent algorithm would be applied to carrier frequency offset estimation. Without the aid of extra pilot, the unbiased estimation can be ob- tained by multiple iterative searches. Numerical simulation results indicate that gradient descent estimator has better per- formance than traditional estimators. Although it needs multiple iterations and more calculation, it could adapt to the char- acteristic of FTN signal better. The performance of decent gradient estimator is closer to Cramer-Rao bound ( CRB), and it also has a good stability in all frequency offset regions.
出处 《信号处理》 CSCD 北大核心 2017年第9期1199-1207,共9页 Journal of Signal Processing
基金 国家自然科学基金(61671476)
关键词 频偏估计 超奈奎斯特传输 码间串扰 梯度下降算法 克拉美罗界 frequency offset estimation faster-than-Nyquist (FTN) signaling inter-symbol interference (ISI) gradient descent algorithm Cramer-Rao bound (CRB)
  • 相关文献

参考文献1

二级参考文献12

  • 1齐国清.几种基于FFT的频率估计方法精度分析[J].振动工程学报,2006,19(1):86-92. 被引量:83
  • 2周剑雄,陈付彬,石志广,付强.补零离散傅立叶变换的插值算法[J].信号处理,2007,23(5):690-694. 被引量:7
  • 3Rife D C, Boorstyn R R. Single tone parameter estimation from discrete-time observations [ J ]. IEEE Trans. On In- formation Theory, September 1974, 20(5) :591-598.
  • 4Quinn B G. Estimating frequency by interpolation using Fourier coefficients [ J ]. IEEE Trans. Signal Process. , 1994, 42 (5) : 1264-1268.
  • 5Quinn B G. Estimation of frequency, amplitude, and phase from the DFT of a time series [ J ]. IEEE Trans. Signal Process. , 1997, 45(3) :814-817.
  • 6Maeleod M D. Fast nearly ML estimation of the parame- ters of real or complex single tones or resolved multiple tones[J]. IEEE Trans. On Signal Processing, 1998, 46 ( 1 ) : 141-148.
  • 7Jacobsen E, Kootsookos P. Fast, accurate frequency esti- mators [ J ]. IEEE Signal Processing Magazine, May 2007, 24(3) :123-125.
  • 8Candan C. A method for fine resolution frequency estima- tion from three DFT samples[ J]. IEEE Signal Processing Letters, 2011, 18(6) :351-354.
  • 9Aboutanios E, Mulgrew B. lterative frequency estimation by interpolation on Fourier coefficients [ J ]. IEEE Transactions on Signal Processing, 2005, 53(4) :1237-1242.
  • 10Fang Luoyang, Duan Dongliang, Yang Liuqing. A new DFT-based frequency estimator for single-tone complex si- nusoidal signals [ C ]//2012-MILCOM 2012. IEEE, Orlan- do, FL, Oct. 2012.

共引文献10

同被引文献32

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部