摘要
乘子交替方向法(ADMM)是求解凸两分块问题的一个十分有效的方法.ADMM有效执行的关键是x和y子问题能否快速有效求解.为简化子问题的求解,一个常用的技巧是引入适当的正则项对x与y子问题进行简化.本文考虑当x和y子问题同时正则化时,ADMM的迭代复杂性,分析了算法在遍历意义下具有O(1/n)的收敛率.
Alternating directions method of multipliers (ADMM) is an minimization problems. The key to solving ADMM is how to deal effective method for convex two-block with x-subproblem and y-subproblem efficiently. It's a common technique that introducing appropriate regularization for x and y-subproblems, which makes subproblems much easier. In this paper, we focus on the iteration complexity for ADMM, and show the O (1/ n) convergence rate in ergodic sense for ADMM when we apply the regularization technique to both x-subproblem and y-subproblem.
出处
《玉林师范学院学报》
2017年第2期14-18,共5页
Journal of Yulin Normal University
基金
国家自然科学基金(11601095)
广西自然科学基金(2016GXNSFDA380019
2016GXNSFBA380185
2014GXSFFA118001)
关键词
凸优化
乘子交替方向法
邻近正则化
收敛率
convex optimization
alternating direction method of multipliers
proximal regularization
convergent rate