期刊文献+

水声信号动态阈值正交匹配追踪降噪方法 被引量:4

Dynamic threshold orthogonal matching pursuit method for underwater acoustic signal de-noising
下载PDF
导出
摘要 为了对实时采集的水声信号进行数据压缩的同时实现信号降噪,提出了一种动态阈值正交匹配追踪方法(Dynamic Threshold Orthogonal Matching Pursuit,DTOMP)。该方法将稀疏分解原理应用于水声信号的预处理,通过在正交匹配追踪算法中引入阈值约束,并根据噪声分布特性将其分为两部分,用以控制预设置的参数。通过对加噪正弦信号、实测鲸鱼叫声和舰船辐射噪声信号的降噪实验,表明该方法能够在对原始水声信号进行压缩的同时提高信噪比,且在较宽的信噪比变化范围内比小波方法具有更好的降噪性能。 In order to achieve data compression and denoising of realtime collected underwater acoustic signal, this paper presents a dynamic threshold orthogonal matching pursuit(DTOMP) method. This method uses sparse representation for underwater signal pre-processing by applying threshold to greedy algorithm, meanwhile divides noise into two parts according to its characteristics to control preset parameters. Experimental researches on noise reduction of sinusoidal signal plus Gaussian noise, whale blows and ship radiated noise signal indicate that this method could improve the SNR and meanwhile compress original signal. Moreover, this method has better performance over wavelet denoising in wider dynamic range of SNR.
出处 《声学技术》 CSCD 北大核心 2017年第4期378-382,共5页 Technical Acoustics
关键词 降噪 稀疏表示 动态阈值 正交匹配追踪 de-noising sparse representation dynamic threshold orthogonal matching pursuit
  • 相关文献

参考文献7

二级参考文献63

  • 1孙斌,周云龙,关跃波,洪文鹏.气液两相流压差波动信号小波去噪中阈值规则的确定[J].信号处理,2006,22(1):96-99. 被引量:8
  • 2Mallat S, Zh0ng S. Characterization of signal from multiscale edges[J]. IEEE Trans. on Pattern analysis and machine intelligence,1992, 14(7): 710-732.
  • 3Mallat S, Hwang W L. Singularity detection and processing with wavelet[J]. IEEE Trans. on IT, 1992, 38(2): 617-643.
  • 4Mallat S, Multiresolution approximations and wavelet orthonomal bases of L2(R) [J]. Trans. of the American Mathematical Society, 1989,315(1): 68-87.
  • 5Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans. Inf.Theory, 1995, 41(3): 613-627.
  • 6Cristobal G, Chagoyen M, Ramirez B E, Lopez J R. Wavelet based de-noising methods[C]. A Comparative study with applications in microscopy, Proc. SPIE, 1996.
  • 7Pierre Moulin, Wavelet thresholding techniques for power spectrum estimation[J]. IEEE Transactions on signal processing, 1994, 42(11).
  • 8Mallat S. Multiresolulion approximations and wavelet orthonomal bases of L^2(R) [J]. Trans. Of the American Mathematical Society, 1989,315(1): 68-87.
  • 9Mallat S. A theory for multiresolulion signal decomposilion: the wavelet representation[J], IEEE Tran on Pattern Analysis and Intelligence, 1989, 11(7): 674-693.
  • 10Mallat S, Zhong S. Characterization of signal from multiscale edges.IEEE Trans[J]. On Pattern analysis and machine intelligence, 1992,14(7): 710-732.

共引文献84

同被引文献19

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部