期刊文献+

基于多尺度仿真的Inconel718切削过程研究 被引量:4

Research of cutting process based on multiscale simulation in machining Inconel718
下载PDF
导出
摘要 镍基高温合金Inconel718因具有优良的性能而广泛应用于航空航天领域,但是起强化作用的强化合金元素以高硬度化合物形式存在,如Ti C、Nb C等相间硬质点,导致其切削加工性差,被定义为难加工材料。通过建立Inconel718的多尺度有限元模型,并加入含有cohesive单元的脆性相颗粒进行切削仿真,深入研究切削Inconel718过程中脆性相对锯齿形切屑形态和切削力的影响规律。结果表明:通过仿真结果与实验结果的对比分析,所建立的多尺度有限元模型与普通仿真结果相比,切屑形态、切削力等均与实验结果更加接近,表明所建立的多尺度模型能够更好的反映Inconel718的切削过程。 Nickel-based superalloy( Inconel718) has been widely used in the aerospace field because of its excellent performance. However,the strengthening alloying elements exist in the form of high hardness compounds such as TiC and N C,which result in poor machinability. It is defined as difficult-to-process material. In this paper,the multi-scale finite element model of Inconel718 was established and the brittle phase particles containing cohesive element were used for cutting simulation. The influence of brittle phase on the shape of sawtooth chips and cutting force during cutting process was studied. The results show that,compared with the finite element model with no brittle phase,the results of chip shape and cutting force when using multi-scale finite element model( adding brittle phase) is closer to the experimental results. This illustrates that the proposed multi-scale finite element model can better reflect the cutting process of Inconel718.
出处 《制造技术与机床》 北大核心 2017年第9期114-117,共4页 Manufacturing Technology & Machine Tool
基金 国家自然科学基金(51605043) 吉林省教育厅项目(JJKH20170562KJ)
关键词 INCONEL718 脆性相 多尺度仿真 锯齿形切屑 Inconel718 brittle phase multi-scale simulation serrated chip
  • 相关文献

参考文献2

二级参考文献13

  • 1刘加富,张洪才,亓俊红,任怀伟.基于ABAQUS的二维金属切削有限元分析[J].机械设计与制造,2006(10):68-70. 被引量:26
  • 2Lin Z C,Lin Y Y.Fundamental Modeling for Oblique Cutting by Thermo-elastic-plastic FEM[J].International Journal of Mechanical Sciences,1999,41(8):941-965.
  • 3Johnson G R,Cook W H.A Constitutive Model and Data for Metals Subjected to Large Strains,High Strain Rates and High Temperature[C]//Seventh International Symposium on Ballistics.Hague,Netherlands,1983:541-547.
  • 4Komvopoulos K,Erpenbeck A.Finite Element Modeling of Orthogonal Metal Cutting[J].Journal of Engineering for Industry,1991,113(3):253-267.
  • 5Usui E,Shirakashi T.Mechanics of Machining from Descriptive to Predictive Theory,on the Art of Cutting Metals-75 Years Later[C]//New York:ASME PED,1982:13-30.
  • 6Iwata K,Osakada K,Terasaka Y,et al.Process Modeling of Orthogonal Cutting by Rigid-plastic Finite Element[J].Journal of Engineering Materials and Technology,1984,106(2):132-138.
  • 7Strebjiwsjum H S,Carroll J T.A Finite Element Model of Orthogonal Metal Cutting[C]//Proceedings of the North American Manufacturing Research Conference.Bethlehem,Pennsylvania,1987:506-509.
  • 8Lin Z C,Lai W L.The Study of Ultra-precision Machining and Residual Stress for Nip Alloy with Different Cutting Speeds and Depth of Cut[J].Journal of Materials Processing Technology,2000,97(3):200-210.
  • 9Zorev N N.Inter-relationship between Shear Processes Occurring along Tool Face and on Shear Plane in Metal Cutting[C]//International Research in Production Engineering.New York:ASME,1963:42-49.
  • 10Shirakashi T,Usui E.Simulation Analysis of Orthogonal Metal Cutting Mechanism[C]//Proceedings of the International.Conference.Production Engineering.(part I),Tokyo,Japan,1974:535-540.

共引文献52

同被引文献12

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部