期刊文献+

基于Harr-NMF特征的车辆检测算法研究 被引量:1

Study on Vehicle Inspection Algorithm Based on Harr-NMF Feature
下载PDF
导出
摘要 为了提高车辆检测的准确率和效率,为智能交通系统提供可靠的参考信息,针对传统Harr特征车辆检测算法存在特征向量维数过大、训练时间过长的问题,提出采用非负矩阵分解Harr特征得到低维的Harr-NMF特征,对Harr-NMF特征分类并由Adaboost算法训练得到基于Harr-NMF特征的车辆分类器,对车身进行有效识别。针对实车测试时出现的重复检测、错误检测等问题,进一步优化了算法。测试结果表明,改进后的算法提高了车辆检测率并有效降低了误检率。 In this paper, in order to improve the accuracy and efficiency in vehicle inspection to provide reliable reference information for the intelligent traffic system, and in light of the problems of the traditional vehicle inspection algorithm based on the Hart" feature, we proposed to decompose the Harr feature by a non-negative matrix to yield a lower-dimension Harr-NMF feature. Next we categorized the Harr- NMF feature and obtained through Adaboost training the Harr- NMF based vehicle classifier for the effective identification of the vehicle body. At the end, in view of the problems encountered in an empirical nractice of the method, we fnrther ontimized the algorithm
出处 《物流技术》 2017年第8期117-121,共5页 Logistics Technology
基金 国家重点研发计划项目"满足国IV标准的摩托车排放控制后处理系统技术研究"(2016YFC0204905)
关键词 智能交通 车辆检测 Harr-NMF特征 ADABOOST算法 intelligent traffic vehicle inspection Harr-NMF feature Adaboost algorithm
  • 相关文献

参考文献2

二级参考文献24

  • 1Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].Pattern Analysis and MachineIntelligence,IEEE Transactions on,2009,31(12):2179-2195.
  • 2Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 3Friedman J,Hastie T,Tibshirani R.Additive logisticregression:A statistical view of boosting[J].Annals ofStatistics,2000,28(2):337-374.
  • 4Viola P,Jones M J,Snow D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journalof Computer Vision,2005,63(2):153-161.
  • 5Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C] //Computer Vision and PatternRecognition(CVPR),IEEE Computer Society Conference on.2005:886-893.
  • 6Vapnik V,Vladimir N.The Nature of Statistical LearningTheory[M].Berlin,Germany:Springer-Verlag,1995:138-151.
  • 7Qiang Z,Mei-Chen Y,Kwang-Ting C,et al.Fast humandetection using a cascade of histograms of oriented gradients[C] //Computer Vision and Pattern Recognition(CVPR),IEEE Computer Society Conference on.2006:1491-1498.
  • 8Zhe L,Gang H,Davis L S.Multiple instance feature forrobust part-based object detection[C] //Computer Visionand Pattern Recognition(CVPR),IEEE Computer SocietyConference on.2009:405-412.
  • 9Dollar P,Wojek C,Schiele B,et al.Pedestrian detection:Anevaluation of the state of the art[J].Pattern Analysis andMachine Intelligence,IEEE Transactions on,2012,34(4):743-761.
  • 10Walk S,Majer N,Schindler K,et al.New features andinsights for pedestrian detection[C] //Computer Vision andPattern Recognition(CVPR),IEEE Computer SocietyConference on.2010:1030-1037.

共引文献332

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部