期刊文献+

融合共同评分用户数和项目兴趣关系的推荐算法 被引量:1

Recommendation Algorithm Combing Number of Co-Rating Users and Interest Relationship of Items
下载PDF
导出
摘要 基于项目的协同过滤系统中,传统的cosine、pearson和jaccard等相似性计算方法都只从单一的角度衡量了项目之间的相似性,导致相似性计算结果不准确。协同过滤系统中普遍存在评分数据稀疏性问题,使这一现象更为严重。针对这些问题,提出了一种融合共同评分用户数和项目兴趣关系的推荐算法。算法根据项目间的同类性和共同评分用户数改进了Pearson相似性,引入用户对项目的兴趣度,基于用户建立项目之间兴趣度向量。实验结果表明:算法提高了推荐准确度,有效地缓解了评分数据稀疏性对传统相似性计算的影响。 In the item-based collaborative fihering system, the traditional cosine, pearson, jaccard and other similarity calculation methods only measure the similarity between the items from a single point of view, resulting in inaccurate calculations of similarity. In addition, review data sparsity problem generally exists in collaborative filtering system, which makes this phenomenon more serious. To solve these problems, a recommendation algorithm combing the number of co-rating users between items and interest relationship of items is proposed. According to the similarity of items and the number of co-rating users, the algorithm improves the Pearson similarity. The algorithm intro- duces the degree of user interest for the items and establishes vector of interest among items based on the user. The experimental results show that the proposed algorithm can improve the accuracy of recommendation, and can effectively alleviate the impact of the sparse data on the traditional similarity calculation.
出处 《信息工程大学学报》 2017年第3期347-353,共7页 Journal of Information Engineering University
基金 国家自然科学基金创新群体资助项目(61521003) 国家自然科学基金资助项目(61171108) 国家科技支撑计划资助项目(2014BAH30B01) 国家973计划资助项目(2012CB315901 2012CB315905)
关键词 基于项目的协同过滤 相似性 稀疏性 兴趣度 item-based collaborative filtering similarity sparsity degree of interest
  • 相关文献

参考文献8

二级参考文献138

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献1467

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部