期刊文献+

基于FPGA硬件实现高斯随机数生成研究

Implementation of Gaussian random number generation based on FPGA hardware
下载PDF
导出
摘要 在信息通信安全领域内,密钥的安全性直接影响公开加密算法的安全性,而密钥的安全性又与随机数的产生及其随机性能的优良息息相关,所以随机数的作用就变得非常的重要。文章基于FPGA硬件来实现高斯随机数生成,算法实现总体共分为两部分,第一部分采用Combined Tausworthe算法实现产生均匀分布的随机数序列;第二部分为Box Mulle算法,利用两组均匀分布的随机数通过转换来产生高斯随机数。产生的随机数的随机性表现良好。高斯随机数目前是应用最为广泛的一类随机数,所以对FPGA的高斯随机数生成器的研究具有非常重要的实际意义。 In the field of information and communication security, the security of the secret key directly affects the security of the disclosed encryption algorithm, and the security of the secret key is closely related to the generation of the random number and the randomness of the random performance. The role of the random number is occupated the core position. This paper implement of Gaussian random number generation based on FPGA hardware. The first part uses the Combined Tausworthe algorithm to realize the random number sequence of evenly distribution. The second part is the Box Mulle algorithm, and uses two groups of evenly distribution random numbers. The randomness of the generated random number performed well. Gaussian random number is the most widely used class of random numbers, so the study of Gaussian random number generator based on FPGA has a very important practical significance.
出处 《无线互联科技》 2017年第18期27-28,47,共3页 Wireless Internet Technology
关键词 随机数 COMBINED Tausworthe算法 BOX Mulle算法 random number Combined Tausworthe algorithm Box Mulle algorithm
  • 相关文献

参考文献3

二级参考文献21

  • 1Jason C et al. Accelerating Monte Carlo based SSTA using FPGA//Proceedings of the 18th Annual ACM/SIGDA Inter national Symposium on Field Programmable Gate Arrays. Monterey, California, USA, 2010:111 -114.
  • 2Luu J et al. FPGA-based Monte Carlo computation of light absorption for photodynamic cancer therapy//Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines. Napa, CA, 2009:157-164.
  • 3Thomas D B, Howes L, Luk W, A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation//Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays. Monterey, California, USA, 2009:63-72.
  • 4Cheung R C C et al. Hardware generation of arbitrary randora number distributions from uniform distributions via the inversion method. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2007, 15(8): 952-962.
  • 5Lee D U et al. A Hardware Gaussian noise generator using the box-muller method and its error analysis. IEEE Transactions on Computers, 2006, 55(6): 659-671.
  • 6Pierre L E. Maximally equidistributed combined tausworthe. Mathematics of Computation, 1996, 65(213): 203-213.
  • 7Box G E P, Muller M E. A note on the generation of random normal deviates. Annals of Mathematical Statistics, 1958, 29(2): 610-611.
  • 8Gu X, Zhang M. Uniform random number generator using leap-ahead LFSR architecture//Proceedings of the International Conference on Computer and Communications Security (ICCCS 2009). Hong Kong, China, 2009: 150-154.
  • 9Dalai I L, Stefan D. A hardware framework for the fast generation of multiple long-period random number streams//Proceedings of the 16th International ACM/SIGDA Symposium Field Programmable Gate Arrays (FPGA'2008). Monterey, California, USA, 2008:245-254.
  • 10Pierre L E, Richard S. TestUOl: A C library for empirical testing of random number generators. ACM Transactions on Mathematical Software (TOMS), 2007, 33(4) : Atrtical 22.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部