摘要
A calculation of film surface temperature during thin films growth by sputtering technique is proposed. The calculation procedure is based on the conversion into heat of the total flux energy of species impinging the film surface during growth. The results indicate that the film's surface temperature depends drastically on material substrate thermal conductivity and thickness on one hand, and the plasma conditions namely the discharge power on the other. The predicted film surface temperatures were used to explain the microstructure evolution of hydro- genated amorphous silicon (a-Si:H) thin films deposited by reactive radio frequency (RF) sputtering on different substrates.
A calculation of film surface temperature during thin films growth by sputtering technique is proposed. The calculation procedure is based on the conversion into heat of the total flux energy of species impinging the film surface during growth. The results indicate that the film's surface temperature depends drastically on material substrate thermal conductivity and thickness on one hand, and the plasma conditions namely the discharge power on the other. The predicted film surface temperatures were used to explain the microstructure evolution of hydro- genated amorphous silicon (a-Si:H) thin films deposited by reactive radio frequency (RF) sputtering on different substrates.