期刊文献+

医学图像检索技术发展现状 被引量:5

Current situation of medical imaging retrieval techniques
下载PDF
导出
摘要 在大数据技术和医院信息化快速发展的背景下,医学图像在医院诊疗活动中发挥着更加重要的角色,迫切需要建立一个高效、准确的医学图像检索系统。分别对基于文本、基于内容和基于语义的3种医学图像检索方法的关键技术进行详细论述和分析,并对医学图像检索技术的发展方向提出了展望。 Medical imaging plays a more important role in diagnosis and treatment of diseases with the rapid development of big data technologies and hospital information systems.It is thus quite necessary to develop the effective and accurate medical imaging retrieval systems.The key techniques for text-based,contents-based and semanticbased medical imaging retrieval methods were thus elaborated and analyzed with the prospects put forward for the future development direction of medical imaging retrieval techniques.
出处 《中华医学图书情报杂志》 CAS 2017年第7期31-35,共5页 Chinese Journal of Medical Library and Information Science
基金 中央级公益性科研院所基本科研业务费项目"基于区域PACS系统的医学图像检索及其在智能辅助诊断中的应用研究"(2016ZX330013)
关键词 图像检索 视觉特征 语义特征 特征提取 Imaging retrieval Visual characteristics Characteristics extraction
  • 相关文献

参考文献11

二级参考文献136

  • 1夏顺仁,莫伟荣,王小英,严勇.基于特征融合和相关反馈的医学图像检索技术[J].航天医学与医学工程,2004,17(6):429-433. 被引量:7
  • 2王勇,吕扬生.DICOM医学图像扩展模型的研究[J].中国生物医学工程学报,2005,24(1):89-92. 被引量:3
  • 3赵贵军,张大波.PACS系统中的DICOM标准概述[J].微计算机信息,2006(06S):259-261. 被引量:15
  • 4Mailer H, Michoux N, Bandon D, et al. A review of cantent-based image retrieval applications-Clinical benefits and future directions [J]. Med Informat, 2004, 73:1 -23.
  • 5Rahman M, Bhattacharya P, Desai B. A framework for medical image retrieval using naehine learning and statistical similarity matching techniques with relevance feedback[ J]. IEEE Transactions on Information Technology in Biomedicine, 2007,11(1) :58 - 69.
  • 6Zhou X, Huang T. Relevance feedback for image retrieval: A comprehensive review[J]. Multimedia Syst, 2003,8(6) :536 - 544.
  • 7Rui Yong, Huang TS, Ortega M, et al. Relevance feedback: A power tool in interactive content-based image retrieval [J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998,8 (5) :644 - 655.
  • 8Rui Yong, Huang TS. Optimizing learning in image retrieval [ A ]. In : Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'00) [ C ]. Hilton Head Island: IEEE Computer Society, 2000. 236 - 243.
  • 9Rui Yong, Huang TS. Optimizing learning in image retrieval[A]. In: Proceedings of IEEE Conference Computer Vision and Pattem Recognition [C]. South Carolina: IEEE Proceedings, 2000, 1:236-243.
  • 10Zhou X, Huang T. Small sample learning during multimedia retrieval using BiasMap [ A ]. In : Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ]. Hawaii: IEEE CVPR, 2001,1:11 - 17.

共引文献55

同被引文献26

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部