期刊文献+

Stochastic Approximation for Expensive One-Bit Feedback Systems 被引量:1

Stochastic Approximation for Expensive One-Bit Feedback Systems
原文传递
导出
摘要 One-bit feedback systems generate binary data as their output and the system performance is usually measured by the success rate with a fixed parameter combination. Traditional methods need many executions for parameter optimization. Hence, it is impractical to utilize these methods in Expensive One-Bit Feedback Systems (EOBFSs), where a single system execution is costly in terms of time or money. In this paper, we propose a novel algorithm, named Iterative Regression and Optimization (IRO), for parameter optimization and its corresponding scheme based on the Maximum Likelihood Estimation (MLE) method and Particle Swarm Optimization (PSO) method, named MLEPSO-IRO, for parameter optimization in EOBFSs. The IRO algorithm is an iterative algorithm, with each iteration comprising two parts: regression and optimization. Considering the structure of IRO and the Bernoulli distribution property of the output of EOBFSs, MLE and a modified PSO are selected to implement the regression and optimization sections, respectively, in MLEPSO-IRO. We also provide a theoretical analysis for the convergence of MLEPSO-IRO and provide numerical experiments on hypothesized EOBFSs and one real EOBFS in comparison to traditional methods. The results indicate that MLEPSO-IRO can provide a much better result with only a small amount of system executions. One-bit feedback systems generate binary data as their output and the system performance is usually measured by the success rate with a fixed parameter combination. Traditional methods need many executions for parameter optimization. Hence, it is impractical to utilize these methods in Expensive One-Bit Feedback Systems (EOBFSs), where a single system execution is costly in terms of time or money. In this paper, we propose a novel algorithm, named Iterative Regression and Optimization (IRO), for parameter optimization and its corresponding scheme based on the Maximum Likelihood Estimation (MLE) method and Particle Swarm Optimization (PSO) method, named MLEPSO-IRO, for parameter optimization in EOBFSs. The IRO algorithm is an iterative algorithm, with each iteration comprising two parts: regression and optimization. Considering the structure of IRO and the Bernoulli distribution property of the output of EOBFSs, MLE and a modified PSO are selected to implement the regression and optimization sections, respectively, in MLEPSO-IRO. We also provide a theoretical analysis for the convergence of MLEPSO-IRO and provide numerical experiments on hypothesized EOBFSs and one real EOBFS in comparison to traditional methods. The results indicate that MLEPSO-IRO can provide a much better result with only a small amount of system executions.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第3期317-327,共11页 清华大学学报(自然科学版(英文版)
关键词 stochastic approximation parameter optimization one-bit feedback system regression MaximumLikelihood Estimation (MLE) stochastic approximation parameter optimization one-bit feedback system regression MaximumLikelihood Estimation (MLE)
  • 相关文献

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部