期刊文献+

基于jittered采样的浅层三维地震数据处理及应用 被引量:5

Shallow seismic data processing and application based on jittered sampling
原文传递
导出
摘要 目前,浅层三维地震勘探在国内外尚处于起步阶段,其勘探深度在100 m以内,勘探目标速度低,地震资料主频较高,根据采样定理,允许的最大道间距较中深层地震勘探要小得多,因此浅层三维地震勘探的观测系统设计和数据处理方法还有许多亟待解决的问题,本文将信号处理领域的压缩感知理论应用到浅层三维地震的观测系统设计和数据处理方法中,研究具有重要的实际意义.理论研究表明:随机采样数据比有规律的欠采样数据能更好的进行波场重建,随机欠采样数据可以将相干混叠转化为不相干噪声,从而将地震数据解释问题转变成了数据去噪问题,同时采用jittered随机采样方式可以避免完全随机采样的数据存在的数据点空间位置过于集中或过于稀疏的情况.本文采用模型分析和实际数据研究的方法,结果显示:在野外进行浅层三维地震数据采集时,如采用jittered随机欠采样方式进行检波器的布置,可以实现以较少的检波器布置较大范围的观测系统,从而大大提高了野外数据采集工作的效率,同时,这种随机的布线可以较灵活地适应野外的工作环境,在采用规则布线时,尽量希望测区足够平坦、开阔,无大尺度障碍物,而随机的布线可以适应有障碍物的地形地貌,在遇到障碍物或不能跨越的地形时,可适当增大道间距,在开阔位置减小道间距进行数据补偿.得到的结论是:这种浅层三维地震道间距无法满足奈奎斯特采样条件的情况,通过检波点的随机分布所采集的地震数据可以有效降低地震资料的混叠效应. At present,shallow 3-D seismic exploration is still in its infancy,its exploration depth is less than 100 meters,the exploration target velocity is low and the frequency of seismic data is high.According to the sampling theorem,the permissible maximum trace interval is smaller than the mid-deep exploration.Therefore,there are still many problems to be solved in the geometry design and data processing of the shallow three-dimensional seismic exploration.In this paper,the theory of compressed sensing in signal processing is applied to shallow seismic geometry design and data processing.Theoretical research shows that random sampling data can better reconstruct the wavefield than undersampled data,The sampled data can transform the coherent aliasing to noncoherent noise,which transforms the seismic data interpretation problem into the data denoising problem.At the same time,the jittered random sampling method can avoid the situation that the spatial data points of the completely random sampled data are too concentrated or too sparse.Through the model and the actual data research,the results show that:in the field of shallow threedimensional seismic data acquisition,such as the use of jittered random undersampling method for the detector layout can be achieved with fewer detectors layout of a wide range of geometry,which greatly improves the efficiency of the field work,at the same time,this random layout can be more flexible to adapt to the field environment.In the use of regular layout,as far as possible hope that the survey area is flat enough,open,no large-scale obstacles,and random layout can be adapted to the topography of obstacles.In the case of obstacles,it is appropriate to increase the trace interval,in the open position to reduce the trace interval for data compensation.This kind of shallow 3-D seismic trace interval can not satisfy the Nyquist sampling condition,and the random distribution of seismic data can effectively reduce the aliasing effect of seismic data.
出处 《地球物理学进展》 CSCD 北大核心 2017年第4期1784-1790,共7页 Progress in Geophysics
基金 水利部"948"课题(201409) 中国地质大学(武汉)地球内部多尺度成像湖北省重点实验室2016年度开放基金(SMIL-2016-04) 2016年湖北省博士后创新岗位"水库大坝渗漏精细探测方法技术研究"联合资助
关键词 压缩感知 随机采样 jittered采样 观测系统 浅层三维地震 compressed sensing randomly sampling jittered sampling geometry shallow 3D seismic
  • 相关文献

参考文献4

二级参考文献54

  • 1汪安民,王殊,陈明欣.一种抗混叠的非均匀周期采样及其频谱分析方法[J].信号处理,2005,21(3):240-243. 被引量:11
  • 2Paulo Jorge S. G. Ferreira, Nonuniform Sampling of Nonbandlimited Signals. IEEE Signal Processing Letters,1985, May, vol. 2, No. 5, 89-91.
  • 3Farokh Marvasti, Tsung Jen Lee. Analysis and Recovery of Sample-and-Hold and Linearly Interpolated Signals with Irregular Samples. IEEE Transactions on Signal Processing, 1992, No. 8: vol. 40, 1884-1891.
  • 4Raman Venkataramani, Yoram Bresler. Optimal Sun-Nyquist Nouniform Sampling and Reconstruction for Multiband Signals. IEEE Transactions on Signal Processing, 2001, vol. 49, No. 10: 2301-2313.
  • 5Daniel Seidner, Meir Feder. Noise Amplification of Periodic Nonumiform Sampling. IEEE Transactions on Signal Processing, 2000, No. 1, January, vol. 48,275-277.
  • 6Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 7Xu S,Zhang Y,Pham D. Antileakage Fourier transform for seismic data regularization[J].Geophysics,2005,(04):V87-V95.doi:10.1190/1.1993713.
  • 8Abma R,Kabir N. 3D interpolation of irregular data with a POCS algorithm[J].Geophysics,2006,(06):E91-E97.doi:10.1190/1.2356088.
  • 9Gao J,Chen X H,Li J. Irregular seismic data reconstruction based on exponential threshold model of POCS method[J].Applied Geophysics,2010,(03):229-238.doi:10.1007/s11770-010-0246-5.
  • 10Herrmann F J. Randomized sampling and sparsity:Getting more information from fewer samples[J].Geophysics,2010,(06):WB173-WB187.

共引文献56

同被引文献59

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部