摘要
地质图书馆书籍多,数据资料庞大,然而却存在数据资料增长过快和难以发现读者兴趣点的问题。实现高效的图书馆借阅数据挖掘分析与推荐,是提高效率的重要手段。为此本文提出了基于大数据地质文献分析挖掘平台,包括聚类分析,中文分词,推荐系统,关联分析功能,再通过Hadoop集群多节点进行推荐,从而提高了工作的效率。
Geological library has a large number of books and data are huge.It is difficult to solve that data grows too fast and it is difficult to find the reader's point.To achieve efficient library borrowing data mining analysis and recommendation,is an important means to improve efficiency.For this reason,this paper puts forward a large-scale data mining platform,including clustering analysis,Chinese word segmentation,recommendation system,correlation analysis function,and then through hadoop cluster multi-node recommendation,thus improving the efficiency of the work.
出处
《中国矿业》
北大核心
2017年第9期92-97,共6页
China Mining Magazine
基金
国土资源部公益性行业科研专项项目资助(编号:201511079)
关键词
大数据技术
分词技术
推荐系统
并行计算
big date technology
word segmentation technology
recommended system
parallel computing