期刊文献+

基于多精度感知的MLC闪存比特翻转译码算法

Bit-flipping Decoding Algorithm for MLC Flash Memory Based on Multiple Precision Sensing Strategy
下载PDF
导出
摘要 随着多级单元(multi-level cell,MLC)闪存存储密度的增加,单元间干扰(cell-to-cell interference,CCI)成为影响NAND闪存可靠性的主要噪声;在深入研究MLC闪存模型和CCI噪声模型基础上,提出了一种MLC闪存多精度感知的比特翻转译码方法,该方法通过选取合适的MLC闪存单元感知精度进而得到MLC单元中存储比特的准确对数似然比信息,利用此信息可降低原始错误比特率并且提高比特翻转译码算法的译码性能;仿真结果表明,在MLC闪存信道条件下,所给方法提高了比特翻转译码算法译码性能,并且保持较低的译码复杂度和较短的感知时延。 With the increase of MLC (Multi-Level Cell) flash memory density, CCI (Cell-to-Cell Interference) is the dominant noise source which affects the reliability of NAND flash memory. On the research of MLC flash memory model and CCI noise model, bit-flipping decoding algorithm based on multiple precision sensing is proposed for MLC flash memory. This method can obtain accurate LLR ( Log-Likelihood Ratio) information of bit stored in MLC by selecting the appropriate sensing precision of MLC flash memory, thus the accurate LLR information helps reduce the REBR (Raw Error Bit Rate) and improve the decoding performance of bit-flipping decoding algorithm. The simulation results show that the proposed method improves the decoding performance of bit-flipping decoding algorithm, and maintains a lower decoding complexity and a shorter sensing delay.
出处 《计算机测量与控制》 2017年第9期194-199,共6页 Computer Measurement &Control
基金 中央高校项目(GK201603016)
关键词 多级单元 单元间干扰 比特翻转译码 multi-level cell cell-to-cell interference bit-flipping decoding
  • 相关文献

参考文献1

二级参考文献17

  • 1Gallager R G. Low density parity check codes[J]. IEEE Transactions on Information Theory, 1962, IT-8(1): 21-28.
  • 2Fossorier M, Mihaljevic M, and Imai H. Reduced complexity iterative decoding low density parity-check codes based on belief propagation [J]. IEEE Transactions on Communications, 1999, 47(5): 673-680.
  • 3Yazdani M, Hemati S, and Banihashemi A. Improving belief propagation on graphs with cycles[J]. IEEE Communications Letters, 2004, 8(1): 57-59.
  • 4Chen J H and Fossorier M. Decoding low-density parity check codes with normalized APP-Based algorithm[C]. Proceedings of the IEEE Global Telecommunication Conference, San Antonio, 2001: 1026-1030.
  • 5M. Near-optimum universal belief-propagation-based decoding of low-density parity-check codes[J]. IEEE Transactions Communications, 2002, 50(3): 406-414.
  • 6Chen J H, Dholakia A, Eleftheriou E, et al.. Reduced- complexity decoding of LDPC codes[J]. IEEE Transactions on Communications, 2005, 53(8): 1288-1299.
  • 7Kou Y, Lin S, and Fossorier M. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J]. IEEE Transactions on Information Theory, 2001, 47(7): 2711-2736.
  • 8Zhang J and Fossorier M. A modified weighted bit-flipping decoding of low-density parity-check codes[J]. IEEE Communications Letters, 2004, 8(3): 165-167.
  • 9Jiang M, Zhao C M, Shi Z, et al.. An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes[J]. IEEE Communications Letters, 2005, 9(9): 814-816.
  • 10Guo F and Hanzo L. Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes[J]. Electronics Letters, 2004, 40(21): 1356-1358.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部