期刊文献+

基于径向基函数插值的积分方程求解 被引量:4

Solving integral equations based on radial basis function interpolation
下载PDF
导出
摘要 将径向基函数(radial basis function,RBF)插值引入积分方程的求解中,具体将待求函数表示为RBF的线性组合,再通过配点法将积分方程离散为线性或非线性方程组,求得权系数后给出待求函数的近似表示.论文选用的RBF是插值性能优异的多重二次曲面(multiquadric,MQ)函数,能在较少节点下取得较高的近似精度;而且RBF定义为距离的函数,在三维或高维插值时仅需改变距离公式,因而便于推广到高维积分方程求解中.在RBF插值矩阵的构造中,元素的积分计算分别通过高斯积分或基于区域剖分的数值求积完成,实现了一维、二维下Fredholm和Volterra方程的求解.算例结果表明:论文方法具有实施方便和精度较高的优点,是一种适合积分方程求解的新方法. In order to acquire a numerical method with high precision character- istic and multi-dimensional adaptability for solving integral equations, the radial basis function (RBF) is introduced. Specifically, the unknown function is firstly expressed as a linear combination of RBF, then the integral equation is transformed to discrete linear or nonlinear equations nally, an approximate representation for through the collocation method, and ti- the unknown function is obtained after determining the weights of RBF. The multi-quadric (MQ) function is adopted due to its superior interpolation performance. In addition, solving three or higher di- mensional integral equations are easily implemented because the RBF is a function of distance and the only changing is the distance formula. The Gauss quadra- ture formula, the geometric splitting and numerical integral methods are employed in calculating the integral in RBF interpolation matrix. Numerical examples as Fredholm or Volterra equations in one or two-dimension have been carried out. The results show that the proposed method is easily to implement, and it has the advantage of high precision and convenience. Therefore, it is a new and suitable method for solving integral equations.
出处 《应用数学与计算数学学报》 2017年第3期275-289,共15页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(51377174)
关键词 线性积分方程 非线性积分方程 径向基函数(radial basis function RBF)插值 多重二次曲面(multi—quadric MQ) 数值积分法 linear integral equation nonlinear integral equation radial basis function (RBF) interpolation multi-quadric (MQ) numerical integration method
  • 相关文献

参考文献2

二级参考文献16

  • 1吴宗敏.SHAPE PRESERVING PROPERTIES AND CONVERGENCE OF UNIVARIATE MULTIQUADRIC QUASI-INTERPOLATION[J].Acta Mathematicae Applicatae Sinica,1994,10(4):441-446. 被引量:29
  • 2吴宗敏.HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS[J].Analysis in Theory and Applications,1992,8(2):1-10. 被引量:6
  • 3H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 4H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 5H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 6C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 7L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 8G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 9H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.
  • 10B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276.

共引文献107

同被引文献13

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部