摘要
讨论了非定常非线性对流扩散方程的EQ_1^(rot)非协调元的逼近问题.通过利用积分恒等式和平均值技巧,并借助于EQ_1^(rot)元所具备的的两个特殊性质:(a)当精确解属于H^3(Ω)时,其相容误差为O(h^2)阶,比它的插值误差高一阶;(b)插值算子与Ritz投影算子等价,得出了关于方程中所出现的扩散参数ε的最优一致误差估计.
In this paper, the EQ1^rot nonconforming finite element approximation to the nonlinear advection-diffusion equations with unsteady coefficients is discussed. By use of integral identities and mean-value techniques, and the following two special properties of this element: (a) the consistency error is of order O(h^2), an order higher than its interpolation error O(h), when the exact solution belongs to H3(Ω); and (b) the interpolation operator is equivalent to its Ritz projection operator, the uniform optimal error estimate is obtained with respect to the diffusion parameter appeared in the equation considered.
出处
《应用数学与计算数学学报》
2017年第3期350-355,共6页
Communication on Applied Mathematics and Computation
基金
国家自然科学基金资助项目(10971203
11271340
11201288)
上海市教委资助项目(shu10043)
关键词
非线性
对流扩散方程
EQ1^rot非协调元
最优一致误差估计
nonlinear
advection-diffusion equation
EQ1^rot nonconforming finite element
uniform optimal error estimate