期刊文献+

配位还原制备膦酸功能化Pd/C催化剂及其应用 被引量:4

Preparation of Phosphoric Acid-functionalized Pd/C Catalyst by Coordination Reduction and Its Application
下载PDF
导出
摘要 采用活性炭为载体,乙二胺四亚甲基膦酸(EDTMPA)作为配位剂和稳定剂,氯化钯(PdCl_2)为前驱体,硼氢化钠(NaBH_4)为还原剂,通过一步还原制备得到膦酸功能化的超细高分散Pd/C催化剂.透射电子显微镜(TEM)及X射线衍射(XRD)分析结果表明,制得的Pd/C催化剂中Pd粒子的平均粒径为2.7 nm,分散度为37.1%,高于同类型商业化催化剂.制得的催化剂对罗丹明(RhB)和对硝基苯酚(4-NP)的催化加氢反应的活化能分别为27.18和16.79 kJ/mol,明显低于商业化Pd/C催化剂(57.12和55.71 kJ/mol). We presented a one-step reduction approach to the synthesis of highly dispersed and ultrafine phosphonate functionalized Pd nanoparticles supported by carbon( Pd/C) using XC-72 as the catalyst support,ethylenediamine tetramethylene phosphonic acid( EDTMPA) as both coordination agent and stabilizer,palladium chloride( PdCl_2) as the precursor and sodium borohydride( NaBH_4) as the reducing agent,respectively.Transmission electron microscopy( TEM) and X-ray diffraction( XRD) analysis results indicated that the average particle size and the dispersion degree in the Pd/C catalysts are 2. 7 nm and 37. 1%,respectively,much higher than those of the commercial catalysts. The activation energy of catalytic hydrogenation for rhodamine( RhB) and p-nitrophenol( 4-NP) for the obtained catalyst are calculated to be 27. 1 and 16. 9 kJ/mol,respectively,obviously lower than those in the commercial Pd/C catalyst( 57. 2 and 55. 7 kJ/mol).
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2017年第9期1619-1626,共8页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21376122,21576139)资助~~
关键词 PD/C催化剂 乙二胺四亚甲基膦酸 配合物 催化加氢 Pd/C catalyst Ethylenediamine tetramethylene phosphonic acid(EDTMPA) Complex Catalytic degradation
  • 相关文献

参考文献7

二级参考文献77

  • 1唐亚文,曹爽,陈煜,包建春,陆天虹.碳纳米管结构对碳纳米管载Pt催化剂电催化性能的影响[J].高等学校化学学报,2007,28(5):936-939. 被引量:15
  • 2杜卫红,安忠维,徐茂梁.过渡金属催化交叉偶联反应及其在液晶合成中的应用[J].分子催化,1997,11(1):72-80. 被引量:7
  • 3Chu Y. Y. , Wang Z. B. , Gu D. M. , Yin G. P.. J. Electrochem. Soc. [J] , 2010, 195(7) : 1799-1804.
  • 4Li X. , Chen W. X. , Zhao J. , Xing W. , Xu Z. D.. Carbon[J] , 2005, 43(10) : 2168-2174.
  • 5Kim Y. S. , Kim H. J. , Kim W. B.. Electrochem. Commun. [J] , 2009, 11(5) : 1026-1029.
  • 6Bashyam R. , Zelenay P.. Nature[J] , 2006, 443(7107) : 63-66.
  • 7Millan W. M. , Thompson T. T. , Arriaga L. G. , Smit M. A.. Int. J. Hydrogen Energy[J] , 2009, 34(2) : 694-702.
  • 8BaiZ., YangL., ZhangJ., LiL., HuC. G. , LvJ., GuoY. M.. J. Power Sources[J], 2010, 195(9): 2653-2658.
  • 9Wang L. , Guo S. J. , Zhai J. F. , Dong S. J.. J. Phys. Chem. C[J], 2008, 112(35) : 13372-13377.
  • 10Cui Z. M. , Xing W. , Liu C. , Tian D. , Zhang H.. J. Power Sources[J], 2010, 195(6) : 1619-1623.

共引文献12

同被引文献11

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部